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ABSTRACT

The properties of the soil-water medium are presented in the
literature independent of its internal organization and operation. The
objective of this study is to develop and test a conceptual model that
used a continuously measured shrinkage curve (SC) to describe the
functional organization of the soil-water medium. In this model, two
functional porosities {micro and macro) are delineated and guantified
by the SC. In addition, the equilibrium for four functional water
pools is represented and parameterized by the SC. A set of eleven
parameters was found necessary to model the seven phases of the SC
and to describe the corresponding soil hydrostructural changes. A
method to accurately obtain the parameters of this model by a specific
analysis of the continuously measured SC is demonstrated. Examples
of continuously measured and modeled SCs according to the pedo-
structure model (PS) are presented and discussed.

MODELING tHE SC can be classified in three catego-
ries: 1, Those considering certain parts of the
curve only such as the model of McGarry and Malafant
(1987) and that of Giraldez et al. {1983), which amounts
to neglecting or fixing a certain number of parameters;
2. Those modeling its mathematical shape as in the case
of Groenevelt and Grant (2001), where they used the
sigmoid curve. A limited number of parameters are then
necessary (two or three), but the sclected parameters
do not have any relevance to the processes being mod-
eled; and 3. Those considering the entire SC but making
assumptions on the shape of the phases, as is the case
of the models of Tariq and Durnford (1993) and
Braudeau et al. {1999): a straight line for the quasi-
linear parts, and polynomial or exponential function for
the curvilinear parts. The parameters of the models are,
therefore, representative points of the SC and, contrary
to the preceding case, are in connection with the process
being analyzed. These points represent particular hy-
drostructural (see Appendix 1 for definitions) states of
the soil and constitute the boundary conditions (V, W)
for each shrinkage phase. However, these models do
not provide any explanation for the corresponding con-
figuration of the distribution of air, water, and solids in
soil, which remains to be explained. The PS proposed
in this paper addresses this issue by modeling the entire
SC without any embodied assumptions related to its
shape and functionality.
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Braudeau et al. (1999) developed a method for contin-
uously measured SCs providing accurate estimate of
the soil water content at each transition point of the
shrinkage phases. They recognized seven shrinkage
phases on a typical curve (Fig. 1), successively linear
and curvilinear, and divided into four stages: interpedal,
structural, basic, and residual. They suggested that the
transition points (A, B, C, D, E, and F of Fig. 1) are
characteristic of the hydrostructural behavior of the soil
and they supplied a method to determine these points
from soil volume change data using optimal fitting tech-
niques. Appendix 2 describes the equations used by
their model. However, these equations were empirically
established and thus do not supply any information
about the hydrostructural processes of the observed
shrinkage phases of the curve; neither do they allow a
better understanding of the mechanical, agronomic, and
hydraulic properties associated with these shrinkage
phases. To quantitatively characterize these properties,
we need a physically based equation of the soil SC that
is an equation linked to a conceptual model of the soil
structure and water interaction.

The nested soil structure has led morphologists to
recognize the soil horizon as the basic typological entity
composed of peds or aggregates, arranged in several
structural levels (Brewer, 1964). The soil and water in-
teractions act at these small scales and are the agents of
soil physical properties that emerge at the macroscopic
scale. When water is lost from a moist soil core sample,
the sample experiences several mechanical states known
as shrinkage phases (Yong and Warkentin, 1966). A
few studies modeled the hydrostructural changes of solil
samples during their shrinkage (Braudeau, 1988a,
1988b; Perrier et al., 1995; Voltz and Cabidoche, 1995;
Chertkov, 2000), each using different hypotheses to rep-
resent the soil medium.

Two major approaches exist for modeling soil water
physical properties in soil matrix. The first views soil
structure as an assembly of capillary tubes between and
within rigid aggregates, forming only one or two levels
of structure. Soil structure is then characterized by a
mono- or bimodal distribution of pore volume by class
size of equivalent pore diameter {Coppola, 2000). The
second approach considers soil structure as an arrange-
ment of particles and swelling aggregates at various
scales: clayey plasma, primary peds and assembly of
primary peds that constitutes the soil fabric at the hori-

Abbreviations: CARHYS, software for soil hydrostructural character-
ization; PS, pedostructure {model of shrinkage curve); SC, shrinkage
curve; SL, straight lines (method of shrinkage curve paramecters deter-
mination); XP, exponential (model of shrinkage curve).



360 SOIL SCL SOC. AM. J.. VOL. 68, MARCH-APRIL 2004

0.72

Residual. . Basic | Structural ;Interpedal

IN. CV i LN cvV N rev o A

—~ 0.70 ' ' ; D E F
2 : : | v o——
e ; ; ; o i o
5 0.68- ; : e ; AV
g : LA ; : ,
3 0.664 ; B o ; . I i
s N A
£ A ~ : i / )
S 0.64- gt ; LS :
o 1 1 v ’ l "
w ; i H ./ ' i
0.62 : —_— { : ;

0.0 0.1 0.2 0.3

Water content W (kg kg™)

Fig. 1. A typical continuously measured shrinkage curve (SC) of a
reconstructed soil sample using three hundred points of measure-
ment. Points A, B, C, D, E, and F are the transition points of the
shrinkage phases as determined by parametric modeling of the SC
according to the exponential model (XP) of Braudeau et al. (1999).
LN, CV refers to as linear and curvilinear phases, respectively.

zon level (Braudeau, 1988a, 1988b; Colleuille and Brau-
deau, 1996). Figure 2 schematizes this approach and
defines the pedostructure as the soil-water fabric of a
soil horizon.

The first point of view is the oldest and most widely
spread. Many equations arise from it, including the well-
known expression relating soil water potential to pore
diameter. However, this approach greatly restricts real-
ity because it disregards both the hierarchy of soil struc-
ture and the specific properties of the water-plasma
interaction such as swelling shrinkage, rearrangement
of particles, and the presence of swelling pressure. The
second approach recognizes the organized soil structure
and the swelling properties of aggregates. Its use has been
limited in modeling physical properties even though it
better explains and fits observed data. A major obstacle
limiting the use of this approach is without a doubt the
lack of a recognized experimental method to character-
ize soil structure scales and their respective contribu-
tions to soil hydraulic properties. This requires a method
that conceptually distinguishes and delimits the nested

Clay particles

A Primary

interpedal
peds

pore space
1

Vp

Mineral
- grains\/,

Plasma pore

space Vp*
Horizon Pedostructure Primary ped
V=1p"+V VE=Vpie Y,

Fig. 2. The pedostructure concept is shown taking into consideration
the hierarchical functional levels of the soil medium.

levels of soil structure as well as physically separates
these functional levels. Colleuille and Braudeau (1996)
proposed a method of soil fractionation into primary
aggregates. The basic concept used for the distinction
of the primary peds structure level, and thus for the
fractionation method, was related to the “air entry point
into the soil clayey plasma” (Groenevelt and Bolt, 1972;
Sposito, 1973; Sposito and Giraldez, 1976). By definition
the primary peds are those representing the first parti-
tioning level of the clayey plasma (Brewer, 1964). At
moisture state just before air entry in the plasma, the
interpedal porosity is dry while primary peds remain satu-
rated, that defines their functional partitioning. Braudeau
(1988a, 1988b) and Braudeau and Bruand (1993) have
shown that this air entry point that is the transition point
between the basic and the residual shrinkage phases
(Point B, Fig. 1) can be obtained precisely from the SC
on condition that it is continuously measured. Braudeau
et al. (1999) developed a device and 2 modeling method
of the SC to precisely determine the air entry point
in the plasma of the soil corresponding to Point B of
the SC.

The objective of this study is to develop and test a
physically based model of the pedostructure fitting the
continuously measured SC during drying. The goal is
to characterize and parameterize the soil-water medium
using its measured SC to model its internal hydrostruc-
tural configuration.

We divide the article into two parts; (i) description
of the shrinkage processes and their relationships caused
by the removal of the water pools held by each of the
two pore systems, inter and intra primary peds, and (i1)
application of the PS to the characterization of four
soil types.

THEORY
The Different Water Pools in the Pedostructure

For interpreting the SC we define two pools of water in
the two pore systems, inside and outside primary peds: swelling
water, w.,, and condensed water or nonswelling, w,. Swelling
water occupies a pore space acquired by the spacing of parti-
cles or aggregates under the effect of osmotic pressure. Its
removal from the sample causes shrinkage of the concerned
pore system. Condensed water, on the other hand, occupies
an interstitial pore space and is replaced by air (or water vapor
at saturation pressure) when it leaves the pore; its loss causes
little or no shrinkage. During drying, each linear phase of the
SC is caused by the predominant departure of only one pool
of water, w, Or W, from either the micro- or the macropore
system (Fig. 3). The curvilinear components of the SC, which
constitute a transition between the two adjacent linear phases,
are caused by the simultaneous departure of the two water
pools (wy, and w,,) corresponding to these two linear phases.
Table 1 shows the different water pools acting in each of the
shrinkage phases. The basic relationship between the pedos-
tructure volume change dV and water pools can be written
as follows:

AV = K.dw, + Kydwy + Kedwy + K dw,, [1]

where K., K., K, and K, are slopes of the linear phases
(residual, basic, structural, and interpedal) of the SC that are
considered constant for the entire range of the water content.
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Fig. 3. Various configurations of air and water partitioning into the two pore systems, inter and intra primary peds, related to the shrinkage
phases of a standard shrinkage curve (SC). w, represents the condensed water lodged in interstitial pore site S, and w,, represents the
swelling water lodged in interstitial pore site S, that can be interped macropores (") or matrix micropores (*). Asterisk means that the site
is active and the corresponding numbers of the active sites are n,, and n.,. The various pools of water, w, wy, W, w;, are represented with
their domain of variation. The inflection points I, and L, and by extension I, and I, are placed on the graph for representing the quasi-
linear shrinkage phases delimited by the transition points (A, B, C, D, E, and F). Points N, M’, and L’ are the intersection points of the
tangents at those linear phases and Points N, M, and L, the corresponding points of the SC.

The water pools within the pedostructure arc defined as wy (=wh) such that dwg = dW in the linear structural phase
follows: (I.); and

w. (=wk) such that dw, = dW in the linear residual wip (=w3) such that dw, = dW in the interpedal phase
W > Wg

wys (=wk,) such that dw,, = dW in the basic phase (I..); All the water pools (W, Wy, Wy, W) and W, total water

Table 1. Nomenclature and symbols used in the definitions of the various shrinkage phases and the various water pools.

Residual Basic Structural Interpedal
Shrinkage
phasest Linear Curvilinear Linear Curvilinear Linear Curvilinear Linear
T (L) ) (L) ) (L) (L) Q)
Transition points A B C D E F
Pore system involved micro () micro (p) micro () () + (m) macro (m) macro (m) macro (m)
Vp* Vp* Vp Vp* + Vp, A\ A\ vp©
Type of water Condensed W= W, Swelling wh, + Wi Condensed Wi + Wi, Swelling
evaporating water wi water w, water water w™
wh
Corresponding water Wiee Wi T W Whs wy, + Wy W Wy T Wy Wi
poolst

T Lies Iigy Iy Ky, and N, M, L, are points of the shrinkage curve used to represent a shrinkage phase (see Fig. 3).
T Wi, Wi, Wy, and wy, are the four water pools corresponding to condensed or swelling water held in the micro— and macropore systems of the pedostructure.
They decrease and vanish successively with decreasing water content from the soil sample.
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content of the sample, are expressed as mass of water divided
by mass of dry soil (kg kg™"); thus the relationship between
the different water pools of the pedostructure is:

W = w, + wy + wy + wyp [2]

The constants K., and K, are near zero and much smaller
than K., and K;,. The above definitions and assumption, and
definition of the specific volumes in Fig. 2, makes it possible
to quantitatively represent the volume change of the different
elements of the pedostructure in terms of the main SC vari-
ables, V and W (Fig. 4).

Following is a derivation of each of the water pools that
constitute the components of Eq. [1].

Let us consider the curvilinear parts of the SC, J (J = L,
M, N), located between the inflection points of two adjacent
linear phases: L for (I, and L), M for (L. and L.)) and N for
(Iys and 1.,) (Fig. 3). According to Table 1, each Segment J
is associated with a swelling (of micro or macropore) and
condensed (of micro or macropore) water pair such as
(wh, and wn), (wi and wi)Y, and (wh and wi) for J = L,
M and N, respectively. Let T1L, (or II%,) be the probability of
walter pool pair w.,, (or w,.) that is lost from the sample during
drying at a given water content of Region J, then:

dwg, - dwe,
dwg + dwa " dwg, + dwe

where [T}, ~ I, = 1 [3]

where w,, can be replaced by wy 01 Wy, and we, by wi OF Wy
depending on the stage of J (N, M, or L; Table 1). In fact,
[T, and I, represent the respective fractions of the two water
pools of the SC Region J, available for evaporation at the
water content W. These two fractions can be considered at
the same energy level depending on W assuming that evapora-
tion is sufficiently slow so that the SC can be regarded as a
succession of equilibrium states after each change of water
content dW.

Each water pool is in interstitial sites S, or S., (of swelling
or nonswelling) that can be active or not as defined in Fig. 3.
Let n,, and n, be the numbers of active sites of swelling and
condensed at J. It is assumed that, for a variation of water

A
st_

content dW, the number dn,, (or dng,) of active sites which
appear for one water pool and disappear for the other (Fig. 3),
is proportional to dW and to the number of active sites n,
(or n.,) present such that:

dn,/dW = kng, and dn/dW = k'ng [4]

This amounts to assuming an exponential progression of the
number of active sites with water lost during drying, increasing
for one water pool and decreasing for the other:

ne, ~ AY and n, ~ BY [5]

Since, for the shrinkage Region J, the loss of a water pool is
proportional to the number of its active sites, the probability
I, can be expressed as:
HJ — dWsw — Ngw — aA v
M dwg, +dwe  nw t g aAY + bBY
(a/b)(AIB)Y
1 + (a/b)(AIB)Y

which can be written as:

. = explk(W — W) and
M1+ explly(W — W)

1

M= 17 explk (W — W) [6]

where a, b, A, B are constants, &, is a constant characteristic
of segment J (= N, M, or L) of the SC, and W, is the water

content at Point J (= N, M, or L) of this segment such as
[T, = I, = 1/2. Integration of Eq. [6] between 0 and W gives:

3

Wey = lLo tl + explk(W = W,)] and
k] 1+ eXp(—kJWJ)

o = LLOg[l + expl—h(W — Wm} -
ky 1 + exp(k;W))

In Region L of the SC, dW = dw;, + dwy, and
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Fig. 4. Graphical representation of the specific volumes (V* and V), the specific pore volumes (Vp* and Vp®), the air contents (Vp4, and
Vp5) and the water pools (W, wy, Wy, Wy, and w,,) of the pedostructure starting from a measured SC. V* is the specific volume of primary

peds, equal to (Vp* — V) = [max (W.)p.

Wy pw —~ V], and p,, is the water bulk density.



BRAUDEAU ET AL NONRIGID AGGREGATED SOIL-WATER MEDIUM 363

Table 2. Values of the probabilities IT/, and IT’, = 1 — IL, in the different shrinkage phases during drying for each water pool. The
subscript sw correspond to the swelling water pool (w;, or wys) and cn to the condensed water pool or nonswelling (w, or w,..) of the

same pair associated with Region J of the shrinkage curve (SC).

Shrinkage phases I 1M M e e -
(L) 0 1 0 1 0 1
(L) 0<Mm<1 1>M>0
(1) 0 1 0 1 1 0
(M) <M<1 1>I1>0
(Lis) 0 1 1 0 1 0
(N) 0<II<1 1>11>0
(1) 1 0 1 0 1 0
W
M = = —eXplklW — Wyl Wy = jo T W [14]
sw ip )
+ W - o ) )
L+ explhd Wul Considering the valucs of Il given in Table 2, Eq. [14] can
1 .
ML, = Ik = 8] be expressed as:

1 + explkd(W — Wp)]

with k; > 0 since for W » W, [T, ~ 1 and Il = 0; and for
W < ‘/VL) Hip = 0 and Hsl = 1
In Region M, dW = dwy,, + dwy and:

MY = explku(W — Wy)] and
T 1+ explhn(W = Wyl
1
I = here ky <0 [9
U+ explla(W — W] oo ™ i

In Region N, dW = dw,, + dw, and
explkn(W — Wy
1 + exp[kn(W — Wy)]
m = L
“1+ explk(W — W)

Each probability [T’ is a logistic equation that varies asymp-
totically between 0 and 1, as shown in Table 2.

Each water pool above has its own active domain and thus
must be considered separately. Equations for the four water
pools follow:

(a) For the case of w, that varies only in Segment N of the
SC,integrating Eq. [6] where [T}, = [T and considering exp(ky
Wy) > 1 gives:

and

m =

with ky > 0. [10]

i

— |
Wre—J

v H?idW _ ———l—log 1 + exp[—kN(W - WN)}
0 ks 1 + exp(kaWy)

which can be written as:

>

W = Wi —kilog{l - exp[—kn(W — W)} [11]

N

(b) For the case of wy., the variation of wy, occurs in Segments
N and M, dw;, can be ignored rather than dw,, dwy, dwy,
therefore, we can write:

des _ des
dW  dw. + dwy + dwy

The product (dw,, dw,) is negligible and therefore ignored in
the following equation:

[12]

deS des
dwrc + dwbs dwbs + dwsl

M TIN —
Hi)s H{x: -

- deS [13]
dw, + dwy, + dw,

Therefore:

W W W
wo = [ T AW + | TNAW ~ [ dw [15]
Jo - I Wi
where W), is the water content at the inflection point of the
basic shrinkage phase.
According to Eq. {7], integration of [15] gives:

W = kl log{1 + explks(W — Wy)])

N

1
+ F lOg{1 o GXP[*‘kM(W — WM)]} [16]
M

One can verify that since ky > 0 and ky < 0, max (wy,) =
(Wy — Wy) for W > Wy,

(c) Similar to the previous case, the case of w, which varies
in Segments M and L of the SC, gives:

wo = [ THITEAW = | AW [17]
[ maw - " aw
Wist J Wist
1 .
wy = —— log{l + exp[—ku(W — W]}
Y
1
—k—log{l + explk(W — W]} [18]
I

and since k. > 0, max(wy) = (W, — W) for W > W,

d) For the case of wy, that varies only in Segment L of the
SC, according to Eq. [7] where ITi, = II}; and ignoring
exp(—k W) below L:

iy = LW [ dw = ilog 1 + explk (W — W)]

kL 1 + exp(—kLW]_)
1
- - log{L + explku(W — W) [19]
L
And
wy, =(W — W) when W > W [20]

Significance and Determination of
Water Pools Parameters

According to Eq. [1], the parametric equation of the SC is:
V = Vo + Krewre + Kbswbs + Ksrwst s Kipwip [21]

where V, is the specific volume of the dry sample. Equation
[21] can be considered as the pedostructure variation law in
which K., ..., K,., are the (geometrical) parameters, and w,,
..., Wy, the parametric functions of water pools at equilibrium
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represented by Eq. [11], [16], [18], and [19]. The variation law
(Eq. [1]) with its parameters and functions represent the PS
in which all of its variables shown in Fig. 4 are at equilibrium
defined by the SC.

The physical significance of the six parameters (ky, ku, kL,
Wy, Wi, W1) used in the water pool functions is demonstrated
in Appendix 3. The points of the SC for water contents
Wy i = n.m. 1y have the same x-coordinates as the intersection
points (N, M’, and L’) of the tangents to the linear parts of
the SC (Fig. 3); and the constants k, represent the reverse of
the vertical (y axis) distance (NN’, MM’, and LL') between
those intersection points and the SC segments (ky. > 0 and
ky < 0):

Wy = Wi Wy = Wiy Wi = Wi
Kbs - K Kbs - K:

ky = “ log(2); ky = * Jog(2);
N Y =V 0g(2); ku Ve — Vi g(2)
ky = E%K log(2) [22]

Vie=W,

Using relationships in Eq. [22] the six parameters of the water
pools are easily calculated from the continuously measured
SC after having drawn the four tangents of the SC at the
inflection points.

Comparison with the Exponential Model

The foregoing conceptual PS uses a total of eleven parame-
ters, six for the water pools and five for the structure:

kvaM:kI,)‘/VNVWM7WL>KIC,K*‘S>KSUK'lpaVO [23]

The independent parameters of the SC exponential mode!
(XP) proposed by Braudeau et al. (1999) also uses a total of
11 parameters, namely:

WA>WB7WC3WD7W};3WF,KrevKL)SyKSUK1pvVA [24]

The method of determining the parameters of the PS using
Eq. [22] and the tangents of the SC, is similar to the Straight
Lines (SL) method for determining the phase transition Points
A, B, ... and F proposed by Braudeau et al. (1999) for the
XP model. This method draws the four tangents to the SC
and uses the vertical distances between the points N', M, L',
and their homologs N, M, L. on the SC (Fig. 3) to determine
the position of the transition phases using the relationships
shown in Table 3 such as:

(Km - Ks()/(VM' - VM = 48/(WM - "VD)
= 3.46/(We. — W) [25]
and
(Ve = V) (We — Wp) = (0.718 K., + K)/1.718
[26]

Points A, B, ..., and F are specific to the XP and do not
physically exist according to the PS. The watcr pools equations
(Eq. [11], [16], [18], and [19]) are asymptotic and there is no
clear transition from one phase to another, as in the XP where
one passes from an exponential curvilinear to a linear phase.

From the point of view of the PS, the location of Points A,
B, ..., and F is an empirical approximation to mark a change
in the effective state of pedostructure where the two pore
systems are in one of three swelling states: minimum, variable,
or maximum; and one of three saturation states: empty, unsat-
urated, and saturated. Thus, according to Fig. 3 showing the
behavior of each water pool on the SC with decreasing water
content, the transition points of the XP model can be consid-
ered as approximations of particular hydral states as follows:
Point F like the interpedal (macropore) air-entry; Point E,
the interpedal shrinkage limit; Point D, the primary peds
shrinkage beginning; Point C, the dry macropore point; Point
B, the micropore air-entry; and Point A, the shrinkage limit.

Using the Shrinkage Curve for Soil Characterization

As shown above, parameter lists [23] and [24], can be easily
estimated from the measured SC using the SL method
(Braudeau et al., 1999). An optimization algorithm was imple-
mented to fit the data to the above equations using the simplex
method. Accordingly, Wy, Wy, Wi characterizes the pore sys-
tems using the water pools definition, such as:

min(Vp*) = Wy/p,, max(Vp*) = Wyipy
VPF = WL [27]

where p,, is the water bulk density.

A special case occurs where the PS and XP act differently.
This is the case of very swelling soils where the macroporosity
of the pedostructure is not significant and the polyhedral ag-
gregates are assembled by their microsurfaces. The structural
shrinkage phase (E-D) is reduced and may even not exist so
the I, and I, shrinkage phases (Table 1) are overlapping.
In addition, the primary peds begin to retract before all the
aggregates are in complete contact (at Point E) giving Wy =
We. In this case and for the PS model, K, must be taken as
equal to zero and should not be confused with the slope of the
shrinkage Phase E-D as it was done with the XP (Braudeau et
al., 1999).

MATERIALS AND METHODS
The soil samples used in this study came from two sources:

1. A pedological cartography and characterization of an
irrigated area in the lower valley of Majerda, 20 km
north of Tunis (North Tunisia), on recent deltaic alluvia
near the Mediterranean Sea. This study (Braudeau et
al.,, 2001) was undertaken within the framework of a
development project with emphasis on pedological infor-
mation system where the physical soil characterization
was to be based on the retractometric analysis. Shrinkage
curves were measured and analyzed on recast soil cores.
The SC measurements were made by means of a “re-
tractometer” (Braudeau et al., 1999). Soil samples were
gently disaggregated and 2-mm sieved, then recon-
structed in consistent cylinders by piling up the aggre-
gatesin a 5.5-cm diameter and 4.0-cm long PV C cylinder
and packing down the cylinders by one cycle of moisten-
ing—drying under free air and stress conditions (Zidi and
Braudeau, 1998). The SC measurements constitute 400

Table 3. Relationships between pedostructure model (PS) and exponential model (XP) shrinkage curve parameters via the tangents
intersection points (L', N', M’) of the Straight Lines (SL) method of Braudeau et al. (1999).

Shrinkage phases concerned

PS - SL - XP relationships

Basic and residual (N)
Basic and structural (M)
Interpedal and structural (L)

kun(2) = (Ky — K)/(Vy = Vi) = 4.81(Wy — Wp) = 3.46/(We — W)

kn2) = (Ku — KV — V) = 48[(Wy — W,) = 3.46/(W; — ‘%’N)
k/In(2) = (Ki, — KV — Vi) = 481(WL — We) = 346/(We — W)
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to 800 points, equivalent to one data point per minute.
Three of the SCs from their study will be used in this
paper: one for a soil located in an old raised bank with
loam texture and the other in the decantation plain with
clay-loam texture. Their great group name in Soil Taxon-
omy Survey (Soil Survey staff, 1996) is Xerofluvents.
They are referred to as Alluvial 1, 2, and 3 in Table 4
and Fig. 5.

2. Four soils, all in Senegal, studied by Braudeau et al.
(1999). Their great group names are Pellustert, Torriflu-
vents, Plinthustox, and Plinthustalf. Soil samples were
reconstituted with <<2-mm sieved aggregates in consistent
cylinders (diameter 55 mm; height 35 mm). After their
wetting on a porous ceramic platc (12 h) they were equili-
brated (48 h) at a matrix potential of —100 kPa before
they were smoothly compacted under a given pressure
to reach the specific volume of the undisturbed soil.
Unlike the precedent study above, the SC data files are
not available and only the XP parameters of the last
five shrinkage phases of the SC (cight parameters) are
provided. Paramcters were determined by minimizing
the difference between the XP and the measured SC.
Two clayey soils were taken as examples in this work
for comparison between the PS model and the XFP: the
Pellustert and the Plinthustox referred to in tables and
figures as Vertisol and ferrallitic soil. Their SC was re-
drawn according to the equations and parameters of the
XP (Braudeau et al., 1999) and was then fitted according
to the PS.

The pedohydral parameter estimation procedure consisted
of conducting an optimized adjustment of the continuously
measured SC to the parametric pedostructure equation of
state [21] [V = f(w)) at constant pressurc and temperature].
This process was implemented in computer software for soil

hydrostructural characterization (CARHYS) in four steps us-
ing the simplex method:

Step 1: Manually estimating the initial location of Points
B, C, and D on the measured SC. Points B and C are located
inside the linear basic shrinkage phase to determine the pa-
rameters of the tangent (of slope Ki,) passing through the
basic shrinkage phase, which remains constant during the opti-
mization. Point D is placed inside the linear structural shrink-
age phase to limit the interval subjected to adjustment in the
second step between the Point D and the last measured point
of the curve {Vp — V.aa}. Vi Is the specific volume corre-
sponding to the last reading.

Step 2: Adjusting segment [V = V.,,} of the measured SC
using the following relationship V1 = Vie + Ky wi and consid-
ering (i) K., = 0 and V,, = Vi, (ii) the tangent to the basic
shrinkage phase, of slope K, is given (determined using linear
regression) and that (iii) Wy, Ve, Wy, kn, ku are the variable
parameters to be determined (Vi is the y-axis coordinate
corresponding to Wy on the given tangent).

Step 3: Adjusting the curve (Ve - V1) versus W for
the whole range of the water content using V2 = Ky wy +
w;, while keeping K, Wi, and k, variables with the constraint
that the maximum value of K, is fixed at 0.07. Beyond that,
K, is taken as zero, considering that the linear phase of this
structural shrinkage is missing and that an overlap exists be-
tween the two curvilinear Phases M and N caused by w,, and
w;, water pools.

Step 4: Adjusting the whole SC using V = Vi + Ky, wy, +
Ky wy + w;, considering only W, kw, Wo, and kg as vari-
able parameters.

The above procedure is repeated for various initial condi-
tions to ensure global optimal solution is reached.

The optimization procedure used to determine these PS
parameters at each step is based on the simplex algorithm.
The final adjustment evaluated by the mean square deviation

Table 4. Results of the shrinkage curve (SC) parameters for the examples in Fig. 5 and 6 using software for soil hydrostructural
characterization (CARHYS). Means and standard deviations (SD) are calculated for 12 CARHYS runs for each sample. Data in
italics are the given pedohydral parameters data of Braudeau et al. (1999).

PS modeling (CARHYS) XP modeling PS modeling (CARHYS)
Alluviall  Alluvialz  Alluvial3 Ferralitic (19 X 21) Vertisol (43 X 14)
Parameters of the XP (2 X 15)i (27x27) (35X 350) Maximal Ferralitic Vertisol
and PS modelst Mean Mean Mean SD (19 X 21) (43 X 14) Mean SD Mean SD
XP model parameters
W, 0.027 0.038 0.044 3 x 107 0.097 0.073 0.097 9 x 107¢ 0.073 3 x 107
W, 0.079 0.089 0.135 4 x 107 0.110 0.106 0.109 8 x 107¢ 0.105 4 x 107
We 0.128 0.183 0.236 S x 107 0.120 0.195 0122 2x10°° 0.207 5% 107¢
Wy 0.197 0.282 0.370 4 x 1073 0.155 0.276 0.163 §x 1072 0.323 2% 10°?
We 0.246 0.276 0375 3 x 107 § § 0.296 3% 10°° 0.242 §x10°°
W, 0.274 0.316 0414 3 X107 0.344 0.321 0.341 2% 1073 0.323 3 x 10
Vi 0.640 0.583 0.598 3 x 107 0.707 0.536 0.707 0.536
Common XP and PS parameters
K, 0 0 0 0 0.10 0 0 0 0
K 0.52 0.74 113 2 X 1072 0.66 0.84 0.610 §x10°° 0.84 2 X 1073
Ky 0.008 0.004 0.023 3x 10" 0.034 0.428 0.018 7 x 107} 0.000 0
K, 1 1 1 1 1 1 1
PS model parameters
ky 110 114 63 5 426 174 476 60 180.7 4
ke -83 -58 -42 3 - 166 -71 ~-140 17 ~49.3 0.7
ko 114 81 84 6 801 801 75 2 54.6 0.2
Wy 0.057 0.067 0.097 2x10°3 0.105 0.092 0.104 2 X107 0.092 1x 107
Wy 0.157 0.224 0.292 2 x 1073 0.135 0.229 0.139 1x10°° 0.255 4 x 107
W, 0.274 0.316 0414 3 x 107 0.344 0.321 0.341 2 x 107} 0.303 3 x 107
Vi 0.640 0.583 0.598 3 x 10" 0.707 0.536 0.707 0.536

T PS, pedostructure; XP, exponential.
} (Clay% X silt < 50 pm%).
§ Values of W; were not given.

1l Values that could not be determined from the initial set of parameters (We missing); they were arbitrarily chosen.
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Fig. 5. Continuously measured and modeled shrinkage curves (SCs) for three alluvial soils in the Lower Majerda Valley, Tunisia, using the
retractometry procedure. The graph on the right hand side shows the fit for the whole data range. One out of three points is represented.
The parameters determined by software for soil hydrostructural characterization (CARHYS) are shown in Table 4. The cumulative variation
curves of the water pools, w,, wy, wy, and w;,, added to V are represented referring to as (1), (2), (3), and (4), respectively. Points A, B, C,
D, E, and F are the transition points of the shrinkage phases defined by the exponential model (XP) and represented on the corresponding

water pools curves.

between the measured and the PS-modeled SC is around 1078,
107". The output of CARHYS is a file containing the resulting
parameters of the PS, and also those of the XP that are de-
ducted from the PS parameters using the relationships shown
in Table 3.

RESULTS AND DISCUSSION

Figure 5 shows the measured and PS-based modeled
SCs of the three alluvial soils of Tunisia along with

the changes in water pools and in specific micro- and
macropore volumes calculated using the PS. In the three
examples, the measured and modeled SCs cannot be
distinguished, the mean deviation being 3.6 X 107 4,3.8 X
107% and 7.0 X 107* dm® kg~! for the three soils with
a coefficient of correlation >0.9995. The two sets of
parameters (PS and XP) determined by CARHYS for
these soils are shown in Table 4. Results are presented
as means and standard deviations of the parameters
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Fig. 6. Shrinkage curves (SCs) and the corresponding micro and macropore volume (Vp* and Vp™) of two clayey soils in Senegal: (a) vertisol,
and (b) ferralitic soil. For the swelling soil case (Fig. 6a) Curve 1 is the modeled w,, water pool contribution (K,w,, + V) to the SC when
K, = 0.4 and Curve 2 when K, = 0. (Points A, B, C, and D are the initial parameters determined by the exponential model (XP) with taking
K, = 0.4; Points C, D", E”, and F” were obtained by CARHYS using the pedostructure (model for SCs) model with K, = 0).

using CARHYS analysis for twelve different initial loca-
tions of the transition points. It can be seen that the
robustness of the CARHYS procedure based on the PS
model equations for determining the pedohydral param-
eters is very good.

Figure 6a and 6b shows a comparison between the
XP and PS. The data given by Braudeau et al. (1999)
of the two clayey soils from Senegal, vertisol, and ferral-
litic soil were used. Equations in Table 3 were used to
calculate the PS parameters from the XP parameters
(Table 4, Columns 5 and 6) to draw PS SCs. The XP
SC were also drawn from the XP parameters. The XP
and PS curves represented in Fig. 6a and 6b for the
two soils cannot be distinguished. The mean deviation
between the PS and XP modeled SC, calculated for 200
points for the interval {W,~We}, was found to be <1.5 X
107* and 0.9 X 10 ¢ for the vertisol and ferrallitic soil,
respectively. However, when CARHYS was used for
these SC for determining the pedohydral parameters,
they were found to be the same as the values given for
the ferrallitic soil and were different for the vertisol
(Columns 5 and 6 in Table 4). This is explained by the
fact that CARHYS fits the SC using the pedostructure
conceptual model that does not accept a value of 0.4
for Ky, the slope of the structural shrinkage phase, as
determined by the XP. As mentioned above, K values
are often near zero and cannot exceed 0.07. If a higher
value of K, is found by the XP procedure (SL method,
Braudeau et al., 1999) as in the case of the vertisol
(Fig. 6a), the interpedal swelling water pool, wj, is not
completely vanished when the shrinkage of the primary
peds starts to be effective. In this case, there is no struc-
tural shrinkage phase and K must be taken as zero.

Figure 6a shows how the particular case of the vertisol
was considered by CARHYS and the XP. For this soil

the contribution of the swelling water, wy, calculated
using Ky = 0.4. is lower (Curve 1) than that calculated
by using K = 0 (PS, Curve 2). This correction (taking
K, = 0) shows that the volume change of primary peds
was underestimated by the XP, but above all, Wy can
be smaller than Wy, signifying that the beginning of the
clayey plasma shrinkage takes place before the interped
shrinkage limit at Point E.

Figure 6b shows the case for ferrallitic soil, clayey
but weakly swelling soil. The structural linear shrinkage
phase (E-D) is well discernible with a slope of K =
0.034 dm® kg . CARHYS determined the same values
of the parameters as those given by the XP.

The decrease in macropore volume shown in the fig-
ure in the range {W—Wr¢} is directly related to the de-
crease in wy,. In the range {Wp-W,}, this change is re-
lated to the micropore volume decrease, depending on
K. being smaller or greater than unity, according to the
following relationships: dVp™ = (K, — 1) dVp*.

The above results show the entire compatibility of
both models. Both fit well the continuous measured SC
even though their basic hypotheses and the resulting
implications are different (Fig. 7). The PS, more realisti-
cally, is based on a conceptual model of the soil fabric
in equilibrium with its water pools. It models all the
state variables of the pedostructure. On the other hand,
the XP is based on partitioning of the SC into linear
and exponential segments. It determines an empirical
delineation of the shrinkage phases and thus defines
phase transition points that are taken as parameters.

Figure 7 shows an example of how the exponential
function of the XP (Appendix 3) simulates the curvilin-
ear segment of the curve w, = f(W) for the vertisol
(Eq. [16]), and how it can thus approximate the effective
beginning and end of change in curvature, namely Points
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Fig. 7. An example of how the exponential functions of the exponen-
tial model (Eq. [A1]) simulates the curvilinear part of the curve
wys = f(WW) of the vertisol (Eq. [16]), and how it can thus determine
the effective beginning and end of variation of the curve. The mean
deviations between the two fitted curves in the ranges (WD-WC}
and (WB-WA}are 3.5 10 “and 1.4 X 10 ‘dm’kg ', respectively.

A and D, where the derivatives of the XP are zero.
This approximation is thus defined by the shape of the
empirical parametric function chosen to model the cur-
vilinear parts of the curve (Eq. [A1]). In this sense, the
XP is a standardized empirical means of defining the
location of soil-water behavior change on the SC.

The pedostructure concept is then composed of the
XP model, which defines the change in macroscopic soil
physical properties, and the PS model that simulates
the internal soil-water medium equilibrium for cach
water content. Together they describe, internally and
externally, the description space of the pedostructure,
of which the eigenvalues are the set of parameters [23]
or [24] (Appendix 3).

CONCLUSION

This article shows how the SC can be considered and
modeled as a result of soil structural variation law and
logistic probability functions for coupled water pools
(swelling and nonswelling) for micro- and macropore
system equilibrium.

As a result, the continuously measured SC can be
used as a unique characteristic of the soil-water medium
that offers a quantitative description of its internal orga-
nization and operation.

A new pedostructure concept was described for char-
acterizing the external and internal behavior of the soil
horizon. This new paradigm will have significant impli-
cations on modeling and characterizing soil-water dy-
namics.

APPENDIX 1
List of definitions

Functional scales: levels of scales in the soil medium defined
by their soil-water interaction and operation contrary to their
classification by size.

Hydrostructural: interaction between soil water and soil
structure.

Pcdohydral parameters: parameters of the shrinkage curve.

Pedostructure: the soil-water medium of the soil horizon com-
posed of the assembly of peds in several organizational levcls,
the last of which is that of the primary peds. It refers to
the combination of the soil fabric and its dynamic operation
with water.

Nomenclature

V, Pedostructure specific volume, dm® per kg of dry soil
horizon

V¥, Primary peds specific volume, dm® per kg of dry soil
horizon

V., Solids (primary particles) specific volume, dm® per kg of
dry soil horizon

Vp, Pedostructure pore specific volume, dm* per kg of dry
soil horizon

Vp", Macropore specific volume of pedostructure, dm? per kg
of dry soil horizon

Vp*, Micropore specific volume of pedostructure, dm’ per kg
of dry soil horizon

W, Pedostructure water content (soil moisture), kg per kg of
dry sotl horizon

wr., Pedostructure residual water pool, kg per kg of dry soil
horizon

wr,, Pedostructure basic water pool, kg per kg of dry soil
horizon

w,,, Pedostructure structural water pool, kg per kg of dry
soil horizon

w.,, Pedostructure interpedal water pool, kg per kg of dry
soil horizon

A, B, C,D, E, F, Shrinkage transition points of the SC defined
by the XP model

N’, M', L', Intersection points of the tangents to the SC at
the linear phases

N, M, L, Characteristic points of the SC at the vertical (y axis)
of N',M', L

L, Is, Inflection points of structural and basic shrinkage phases

Wa, Ws, ... Wg, Pedostructure water content (kg kg ™) at Points
A,B, .., F

Wy, Wy, Wi, Pedostructure water content (kg kg™*) at Points
N, M, L

Va, Vs, ..., Vg, Pedostructure specific volume (dm’ kg !) at
Points A, B, ..., F

Vi, Vi, V1, Pedostructure specific volume (dm® kg™!) at Points
N, M, L

Vi, Vi, Vi, y-axis values (dm® kg™") of Points N, M', L' in
the SC graph

K., Ky Ky, Kip, Slopes of the SC linear phases (dm® kg™!)

kn, ks, ki, Shape parameters (kg kg ) of the SC equation

APPENDIX 2
Equations of the Exponential Model

Points A, B, C, ..., and F were defined as the parame-
ters of the exponential equation (XP model) that fits
the curvilinear phases of the SC. For example, the ex-
pression for the curvilinear Phase D-C is:

V=V, + M (kylexp(W,) — W, — 1]
o

+ Ky[eW, — exp(W,) + 1] [A1]
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where W, = (W — Wp)/(We — Wp) and e = exp(l) =
2.718. :

This leads to the important relationships between pa-
rameters when W = W in Eq [Al]:

(Ve = Vp)l(We — Wy) = [Ky (e — 2) + K)/
(e — 1) = 0.418 Ky, [A2]

This last equation is used to establish the relationships
in Table 3.

APPENDIX 3

Significance of the Parameters k;
and W, (J = N, M, and L)

Equations for the tangents at the linear phases repre-
sented by Points I, I, I, and I, in Fig. 3 are obtained
by integrating Eq. [1] (see main text) into each
Segment L, M, and N of the curve. For the Segment M
of the SC, integration of Eq. [1] and [9] according to
[7] gives:

V= V= Ki(wes = woa) + Kalwa — wan)

1 + explku(W — WM)]}

V - VM - %Log{

M 2
- kg Log/L* exp[—k;(W - WM)]} A3]
M

Equations for the tangents are:

vV - VM — __(Kbs - Kst) L0g2

M

- KS[(W - WM) for W > VVM [A4]

(in the lincar structural shrinkage phase), and in the
linear basic shrinkage phase:

_ (Kbs — Kst) L0g2
ko

—+ Kl\<(W — WM) fOr W << W\/l [AS]

V_‘VM:

Thus, the coordinates of the intersection Point M’ of
the two lines are:

WM' = WM and
Vw = Vy - (Kbs -

A

Ky) Log2/iky [A6]

The intersection Point M’ and the Point M of the
SC have the same x-coordinate and ky represents the
reverse of the distance MM’ except for the factor (Ky,—
Ky) Log2. The same reasoning applies for Parts L and
N of the SC that gives:

W. = Wy and Vi = Vi — (K, — K)Log2lk, [AT7]
WN’ = WN and VN’ = VN s (Kbs = K[e)Lng/kN [AS]

These three last equations are listed in Table 3 and
are used to transform the PS parameters into XP pa-
rameters.

The SL Method for the XP and PS Models,
and the Required Parameters

w

Building the SC according the XP and using the SL
method proposed by Braudeau et al. (1999) needs, as
for the current PS model, the four tangent lines at the
inflexion points of the SC (eight parameters), plus the
y axis of the three points, N, M, and L, (three parame-
ters) of the SC corresponding to the intersection points
N’,M’, and L' of the tangents. This leads to 11 parame-
ters. If the enclosed porosity (nonconnected) is ne-
glected, then the interpedal shrinkage line (IP-line) is
identified to as the saturation line of which the slope is
unity and the necessary parameters number becomes
10. In that case, W,, = W and V, = V_ — W,

Thus, if there are no other pore subsystem in the
pedostructure other than the primary peds and their
assembly, the two slopes at the extremes of the curve
reduce to zero for W = 0 and one for W > W_,. There-
fore, the pedostructure description space is nine-dimen-
sional if the enclosed porosity is neglected (IP-line and
saturation line are merged).

In most cases, simplifications can be made: K,, = 0;
K, =0; V, =04 (d; = 2.5 kg dm™3), which reduces
the parameters number. Additionally, if the interpedal
shrinkage is also neglected (for modeling soil in situ,
for example) the five-phases SC is considered with only
six parameters required, such as:

Vo= Vi Vo = Vi, Wi, W ks ku
or
Vo = Vs Was Way We; Wos K,
Vg and Vp being calculated using (Eq. [A2]).
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