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Dynamic Time Step for One-Dimensional Overland Flow
Kinematic Wave Solution

Fouad H. Jaber1 and Rabi H. Mohtar2

Abstract: Kinematic wave theory is widely used in modeling a variety of hydrologic processes. Results of applying the kinematic
overland flow solution using different time steps showed that the conventionally used stability criterion known as the Courant co
fails to give a time step estimate that ensures stable and accurate numerical solutions. Accordingly, a new accuracy-based dyn
step estimate for the one dimensional overland flow kinematic wave solution is developed. The newly developed dynamic ti
estimates are functions of the mesh size, watershed slope, roughness, excess rainfall, and time of concentration. The new cr
developed by comparing the consistent formulation of the Galerkin-Crank Nicholson numerical solution of the kinematic wave e
to the characteristic method-based analytical solution, using different time steps and meshes. For each simulation, charact
boundary and initial conditions and mesh size, an optimal time step that integrates the problem within 5% error was determin
series of mesh sizes and corresponding optimal time steps were used to develop the dynamic time step. The time step criteria w
on a variety of problems, including a steady state and time varying rainfall scenarios, and proved to be adequate for accurate a
results within an efficient computational time. The criteria can be easily integrated in flow routing models to select the optimal tim
with minimal user input.

DOI: 10.1061/~ASCE!1084-0699~2002!7:1~3!

CE Database keywords: Overland flow; Kinematic wave theory; Hydrologic models; Finite-element method; Time factors.
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Introduction

The kinematic wave theory has been researched and reported
tensively in hydrology literature since Lighthill and Whitham in
troduced it~Lighthill and Whitham 1955!. It has been applied in
many areas and is now well established for modeling a variety
hydrologic processes. Growing environmental and ecologi
concerns have increased the role of the kinematic wave theor
describing and modeling environmental and hydrologic proces
~Singh 1996!. The kinematic wave equations, resulting from sim
plification of the Saint-Venant equations, have many advantag
Among these are the possibility of analytical solutions for simp
geometries and fewer boundary conditions as compared with
far more complex Saint-Venant equations. Hjelmfelt~1981!, Par-
lange et al.~1981!, Govindaraju et al.~1988, 1990!, and Singh
~1996! have provided good insights for generating analytical
semianalytical solutions for the kinematic wave approximatio
However, except for Singh~1996!, who provided solutions for
problems with rainfall, slope, and roughness varying in spa
their analyses dealt only with constant or time-varying rainfa
Problems with spatial variation of rainfall or surface character
tics, such as roughness and slope, are still not well documente
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the literature. Problems that can be solved analytically requ
that rainfall, slope, and roughness vary in space, according t
prescribed mathematical relation. Thus, problems in which ra
fall and surface characteristics vary randomly in space have
analytical solution.

Higher computational power and the development of spat
data analysis tools such as geographic information systems~GIS!
have made the use of numerical methods to solve these probl
much easier. The one-dimensional kinematic wave equation
governed by the continuity equation

V
]h

]x
1h

]V

]x
1

]h

]t
5r ~x,t !2 i ~x,t ! (1)

and the conservation of momentum equation, which is reduced

S05Sf (2)

by the kinematic wave assumption, whereV5depth averaged ve-
locity; h5vertical flow depth;r (x,t) and i (x,t)5rainfall and in-
filtration rates, respectively;S05element bottom slope;Sf

5friction slope; andx and t represent the space and time do
mains, respectively. The derivation of Eqs.~1! and~2! is given by
Chow et al.~1988! and Henderson~1966!, among many others.

The flow rate per unit area equivalent to the value ofV times
h and depth in Eq.~1! can be related by a parametric friction los
equation in whichS0 is substituted forSf as follows:

q5axh
b or V5axh

b21 (3)

where, using Manning’s equation,ax5(Sox
1/2/n) andb5(5/3), in

which n5Manning roughness coefficient andV5flow velocity,
assuming SI units.

Eq. ~1! is the differential form of continuity. Together with the
energy loss relation~Manning, Chezy, or Darcy-Weisbach! shown
in Eq. ~3!, these form the governing kinematic wave equations

,

ust
e
.
e
is
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The validity of the kinematic simplifying assumption is con
sidered accurate to within 10%~Woolhiser and Liggett 1967!, if

LS0

F2h0
.10 (4)

whereL5 length of domain;F5Froude number and is equal to
F5(u0 /(gh0)0.5); andh0 andu05depth and velocity of flow at
the downstream end of the overland flow plane under steady-s
conditions, respectively.

Integrating Eq.~1! with the boundary and initial conditions
over space and using the consistent formulation of the fin
element method yields the time dependent system of ordin
differential equations~ODEs!:

@C#$h%new5@C#$h%old2Dt@B#~~12u!$q%old1u$q%new!

1Dt~~12u!$F%old1u$F%new! (5)

where@C# and @B# are matrices resulting from the finite-eleme
solution in space and are referred to in finite-element analysis
capacitance and gradient matrices;F5forcing term, i.e., the lat-
eral inflow that is the rainfall excess for an overland flow plan
h5depth of flow;q5flow per unit area equivalent to the value o
V times h; u is a factor that determines the type of finite diffe
ence scheme solved; and old and new refer to the previous
step and the actual time step.u50, 0.5, 0.67, and 1 for Euler,
central difference, Galerkin, and backward difference schem
respectively. Mohtar and Segerlind~1998! showed that the centra
difference scheme (u50.5) is the most accurate single ste
scheme among the four schemes; thus, it will be used in
current study.

Eq. ~5! is coupled with Eq.~3! to generate a nonlinear system
of equations that will be solved for the flow depth at each no
and time step. For a more detailed description of the fini
element formulation and finite difference solution in time, s
Vieux et al.~1990a, b!.

Numerical methods require discretization in both space a
time. The size of the element and the time step are crucial to
stability and the accuracy of the numerical scheme used. Prev
studies ~Courant et al. 1956; Vieux and Segerlind 1989! have
shown that the actual time step used in the time integrat
scheme must not be longer than the time during which a gra
wave front may propagate through the system, or longer than
time step variation in the forcing function. The prior condition
known as the Courant condition~Courant et al. 1956!. The Cou-
rant time step for each element may be computed using the ce
ity of a gravity wave by

TCourant,
Dx

~gh!1/2 (6a)

whereTCourant5Courant time step in seconds;Dx5distance in-
crement or element length in meters;g5gravitational accelera-
tion in m/s2; and h5downstream equilibrium flow depth in
meters.

For the kinematic wave assumption, the critical time st
TCourantcan be expressed as

TCourant5
lS0

0.15c0.3

g0.5L0.3r e
0.3n0.3 (6b)

wherel 5element length in meters;S05watershed slope in m/m;
c is a constant equal to 1.0 in the SI system and 1.49 in Eng
units; g5gravitational acceleration in m/s2; L5slope length in
meters;r e5rainfall excess rate in m/s; andn5Manning’s rough-
4 / JOURNAL OF HYDROLOGIC ENGINEERIING / JANUARY/FEBRUARY
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ness factor. Numerical errors arise if the time step exceeds
condition in Eq.~6a!. This condition is limited by its inability to
deal with cases where slope, roughness, or rainfall excess i
varies from element to element. This condition, however, is
stability criterion and not an accuracy criterion. Lyn and Goodw
~1987! showed that, although a given difference scheme may
stable, its convergence may be poor. In other words, if a time s
has low convergence, then it is too large for accuracy~Mohtar and
Segerlind 1995!. Limited research has been conducted on crite
for a time step that would ensure stability as well as accuracy
the kinematic wave solution. The task of choosing the proper ti
step has often been considered a matter of experience. B
charya and Barry~1997! have stated that reducing the time ste
does not necessarily result in more accurate solutions. They ad
that optimal solutions are yet to be found. Bajracharya and Ba
~1997! have generated a spatial step based on the truncation e
in the finite difference solution of the Muskingum-Cunge form
the linear kinematic wave problem. The time step, then, is gen
ated for the calculatedDx using the Courant condition. Thus, t
get optimum results one must vary the Courant condition to ge
Dt from the calculatedDx that would ensure the accuracy of th
problem. This still requires some trial and error, while ignorin
the temporal error in the kinematic wave problem. In addition, t
Muskingum-Cunge model is limited to situations of flood for
casts where simplicity and rapidity of computations are sou
rather than accuracy~Cunge 1999!. Hromadka and DeVries
~1988! argued after a series of tests varyingDx and Dt that the
use of the kinematic wave method for channel routing nee
evaluation for use in hydrologic models unless guidelines are
veloped to control the arbitrary use of the kinematic wave
design studies. They added that kinematic wave programs n
internal checks to selectDx andDt such that an accurate solutio
is achieved. This clearly shows the need for time step crite
which can be used in overland flow models to ensure accu
solutions for the kinematic wave equation. The criteria should
part of a user input-free hydrologic modeling environment, th
eliminating the trial-and-error procedures that usually accomp
the time step selection in watershed modeling.

The objective of this study is to develop and evaluate
accuracy-based dynamic time step estimate for the numerica
lution of the one-dimensional kinematic wave problem. The c
teria can be part of a user input-free hydrologic modeling en
ronment. The complexity of the mathematical problem makes
analytical approach to this problem very difficult. The approach
this study utilizes numerical experimentation.

Methodology for Developing Dynamic Time Step
Criteria

Overall Methodology

The one-dimensional kinematic wave overland flow proble
governed by Eqs.~1! and ~3! together with specified boundary
and initial conditions, is solved using constant and varying ra
fall and Manning’sa for a certain mesh using different time step
For each time step, the error between an analytical solution
tained by the characteristics method and the numerical solu
was computed. A time step versus error graph was generated
this series of solutions. As the value of the time step increas
the error was expected to grow, provided that the spatial discr
zation error is small. A time step value exists that will integra
the problem within a specified error. Using a smaller time st
might result in an unnecessarily longer computational time, wh
2002
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a larger time step might result in large errors and might even le
to instability in the solution. The specified problem was solve
using several mesh sizes to generate a relation between mesh
and optimal time step. The results are summarized in a regres
equation that was used to define a time step estimate. The tim
concentration, which depends on the excess rainfall, the slo
and the roughness factor of the watershed, was introduced in
equation as a problem specific factor so the criteria can be u
for other problems. The time step estimation equations w
tested using a different problem to ensure the validity of the
sults.

Numerical Experiment Problem Definition

Accuracy in this analysis was assessed by comparing the num
cal solution to the analytical or exact solution in a numeric
experiment. These solutions are applicable for simple proble
where the spatial distribution of rainfall and the spatial distrib
tion of surface characteristics~Manning’s roughness and slope!
can be expressed by a mathematical relation. The experime
scenarios were chosen accordingly. Four cases were consider
this study:

1. r e anda constant;
2. r e varying in space anda constant;
3. r e constant anda varying in space; and
4. r e anda varying in space
where r e5rainfall excess@r (x,t)2 i (x,t) from Eq. ~1!#; and a
5Manning’s friction parameter of Eq.~3!.

In order to illustrate the solution accuracy requirement
terms of time steps and element sizes, nodal values of wa
depths were computed for 5, 10, 20, 25, 50, and 75 elements
each case. Various time steps were used to integrate the syste
ordinary differential Eq.~6!. Each scenario was solved using th
following conditions: ~1! contributing area of unit width has a
lengthL equal to 152.4 m~500 ft!; ~2! the average rainfall excess
intensity is 2.74 cm/h (2.5E25 ft/s); ~3! the average bottom
slope is 0.05; and~4! the average Manning’s roughness coeffi
cient is 0.035. For cases wherer anda varied in space, the fol-
lowing relations were used:

r e520.036x15.49

a56.015•e0.00984x

wherex5 length coordinate along the hillslope in meters.
The Courant condition@Eq. ~6!# of each simulation was calcu-

lated as well as the time of concentration according to the follo
ing equation~Singh 1996!:

tc5
1

b E
0

LF 1

a~h!G1/bF E
0

h

r e~j!djG ~12b!/b

dh (7)

whereb55/3; L5slope length; andh andj5dummy variables.
The storm duration was set to exceed the time to concentra

so that preequilibrium, equilibrium, and postequilibrium cond
tions could be evaluated; thus, the storm length or the duration
continuous rainfall was set to be 0.4 hours, based upon elem
properties. The total simulation time was 1 hour.

Error Criteria

The average percentage error was computed for each nume
simulation by the following equation:
JOURN
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D G3100 (8)

where e5average percentage error;m5number of sampling
points in space;n5number of sampling points in time;qa

5analytical solution for flow; andqn5numerical solution for
flow.

Numerical Solution

A finite-element-based overland flow model 2DSTREAM, orig
nally developed by Vieux et al.~1990a! and modified for the pur-
pose of this study, was used for solving the uncoupled set
overland flow Eqs.~1! and ~5!. Fig. 1 shows the modified mode
flow chart. Watershed input data such as nodal coordinates
emental slopes, and roughness are read at the beginning of
run. The forcing functionr e(x) then is calculated. Using the ele
ment and force vector information, the system of equations
built, updated, and solved for new flow depth~h! values.

The solution forh is implicit and requires iteration until con
vergence to a specified tolerance valuee. After convergence onh,
the time is incremented and the solution proceeds in the s
manner by updating the time matrices and evaluating newh val-
ues. The model used has been validated for different rainfall
slope conditions~Vieux et al. 1990a; Jaber and Mohtar 1998!.

Analytical Solution

Analytical solutions can be derived for linear problems w
simple geometrical domains where functions for rainfall and w
tershed characteristics, such as slope and roughness, are pre
mined~Chow et al. 1988; Singh 1996!. Singh~1996! presented a
general form of the analytical solution for rainfall excess a

Fig. 1. 2-DSTREAM Flow Chart modified for this research
AL OF HYDROLOGIC ENGINEERING / JANUARY/FEBRUARY 2002 / 5
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Manning’s a, both varying in space only. Eq.~9! represents the
rising and constant parts of the hydrograph, while Eq.~10! is for
the receding limb of the hydrograph:

h~x!5F 1

a~x! E0

x

r e~j!djG1/b

(9a)

t~x!5
1

b E
0

xF 1

a~h!G1/bF E
0

h

r e~j!djG ~12b!/b

dh for 0<t<t r

(9b)

and

h~x,x* !5F 1

a~x! E0

x*
r e~j!djG1/b

(10a)

t~x,x* !5tr 1
1

b F E
0

x*
r e~j!djG ~12b!/bE

x*

x F 1

a~h!G1/b

dh

for t r<t<t f (10b)

where r e5 input rainfall excess rate;b55/3; x5space coordi-
nate;a is a factor of roughness and slope determined from Ma
ning’s equation;t r5storm duration in hours;t f5total simulation
time; x* 5 intersection of the characteristic curve passing throu
the origin with thet5t r line; and j and h5dummy variables.
Using Eq.~9! for a fixed value ofx, a hydrograph may be devel-
oped to calculate depth and discharge of water as a function
time. Similarly, the water profile of the slope for a given time ca
also be calculated from Eq.~9!.

From Eq.~10b!, an expression forx* can be generated as a
function of t andx and used in Eq.~10a! to solve for the receding
part of the hydrograph. This part requires an iterative soluti
because of the nonlinearity of the resulting equation.

For all analytical solutions that were generated@qa in Eq. ~8!#,
space was sampled at each node in the system, while time
sampled at 0.15, 0.30, 0.40, 0.50, 0.75, and 1.0 hour. These va
were compared with the generated numerical solutionqn and used
in the error term of Eq.~8!.

In cases 2, 3, and 4, for points beyond the location of the wa
maximum flow in the rising limb, the solution@Eq. ~9!# is not
valid, and thus not included in the error calculation.

Time Steps Selected

Each of the previously mentioned cases were run using fixed ti
steps of 0.1, 0.25, 0.50, 0.75, 1.0, and 1.2 times respective C
rant time step of each simulation. This allows examination of t
effect of the time step on the accuracy of the solution and asse
ment of the validity of the Courant condition. The numerical s
lution was sampled at each of the nodes and selected times
compared with the analytical solution, as previously indicated

Dynamic Time Step Determination Process

Time step criteria for the numerical solution of the kinemat
wave equation were determined following the methodology
Mohtar and Segerlind~1998, 1999a, b!. To estimate the time step
needed to integrate the ODE in Eq.~6!, a numerical experiment
was conducted with the previously mentioned conditions. T
four cases involving the spatial variability ofr and a were ana-
lyzed using six mesh sizes. Each of these 24 scenarios was s
lated using six time steps that were selected as multiples of
Courant time step of each scenario. Analytical and numerical
6 / JOURNAL OF HYDROLOGIC ENGINEERIING / JANUARY/FEBRUARY 2
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lutions were compared for each simulation according to Eq.~8!. A
response line of average error versus time step was plotted.
time step that provided 5% average error was graphically selec
for each scenario. The selected time steps were plotted agains
mesh size and regressed to generate an equation that would
vide the time step that would integrate the kinematic wave equ
tion with 95% average accuracy. The time of concentration, c
culated using Eq.~7!, was integrated into the regression as
problem specific factor. For each case, a time step dependen
the number of elements and the time of concentration was gen
ated.

Time of Concentration Estimates

The time of concentration (tc) is defined mathematically as the
intersection of the characteristic curvet(x,0) passing through the
origin with the linex5L. The time of concentration can be de
fined as the time when the maximum flow is reached in the h
drograph~thus, it is also sometimes known as time to equilib
rium!. It is typically determined using a version of the kinemati
wave equation~McCuen and Spiess 1995!. Singh ~1996! deter-
mined the general form oftc given in Eq.~7!.

The time of concentration for each of the three simplifie
cases, then would be as follows.

Case 1:a and r e constant:

tc5r e
~12b!/bS L

a D 1/b

(11a)

Case 2:a constant andr e varies in space:

tc5
1

b S 1

a D 1/bE
0

LF E
0

h

r e~j!djG ~12b!/b

dh (11b)

Case 3:a varies in space,r e constant:

tc5
r e

~12b!/b

b E
0

LF 1

a~j!G1/b

j~12b!/bdj (11c)

Several empirical estimations can also be found in the literatu
~McCuen and Spiess 1995!. These are only applicable for case 1
problems.

One such relation commonly used is that of Ragan and Du
~1972!:

tc5
0.0803~nL!0.6

r eS
0.3 (12)

where tc is in hours; n5Manning’s roughness coefficient;L
5 length in meters;r e5rainfall excess in cm/h; andS5slope in
m/m. The analytical, numerical, and empirical times of conce
tration (tc) are shown in Table 1. The numericaltc was deter-
mined as the time when all the hillslope is contributing to th
flow.

Adequacy of Courant Condition

The time steps used in developing the new criteria were fra
tions and multiples of the Courant time step, varying from
0.1•TCourant ~Courant condition time step! to 1.2•TCourant. Ex-
ample plots for a 20 element mesh for case 1~r e anda constant
in space! at a time step equal to 0.75TCourant and TCourant are
shown in Figs. 2 and 3. Fig. 3 shows the numerical instability f
time steps equal to the Courant condition. This instability
caused by the time step being too large, which proves the in
002
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equacy of the Courant time step for integrating the overland flo
problem. Fig. 4 is a plot of the error against the dimensionle
time step calculated asDt/TCourantfor case 1. The runs for a time
step equal to 1.2•TCourant converged only for a mesh of five ele-
ments. The time step equal toTCourantdid not converge for the 25
element mesh, and time steps greater than 0.5•TCourant did not
converge for 50 and 75 element meshes. There is a thresh
beyond which the error suddenly increases. Fig. 4 also shows t
the threshold, after which the error drastically increased, vari
with the mesh size. For a mesh of five elements, it was grea
than 1.2•TCourant, while for 50 elements, it was between
0.5•TCourant and 0.75•TCourant. This proves that the Courant con-
dition time step is not a reliable criterion for accuracy and stab
ity. New criteria need to be developed that would take the syste
characteristics into consideration.

Dynamic Time Step Estimates

The results generated in the numerical experiments correspond
error estimates for each of the six meshes and the six differe
time steps for each of the four cases. The error was calculated
each of the solutions that converged. The error was plotted ver
the time step. The results are shown in Figs. 5–8 for cases 1
respectively.

As expected, error decreased considerably as the number
elements increased. It also was observed that the error remai
more or less constant or increased very slightly to a certa
threshold, where it increases drastically or even where no conv
gence occurs in the solution.

The threshold time steps were determined graphically usi
Figs. 5–8. The largest time step that resulted in less than 5% er
was chosen for each of the six meshes selected. These time s
were divided by the time of concentration and regressed agai
the number of elements in each mesh. A power best fit was ge
erated for each case line~Figs. 9–12!. The power line was chosen
because it best fit the shape of the generated curves.

The dynamic time step estimates,Dt in hours, for the four
cases are, respectively

Fig. 2. 2-DSTREAM solutions compared with analytical solutions
for 20 element mesh and time step of 0.75 Courant time step
different times of runoff hydrograph for Case 1~a and r e constant!

Table 1. Analytical, Numerical, and Empirical Times of Concentra
tion in Hours

Estimate Case 1 Case 2 Case 3 Case 4

Analytical 0.21 0.17 0.20 0.17
Numerical 0.21 0.18 0.20 0.17
Regan and Duru~1972! 0.20 N/A N/A N/A
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Fig. 3. 2-DSTREAM solutions compared with analytical solutions
for 20 element mesh and time step equivalent to Courant time step
different times of runoff hydrograph for Case 1~a and r e constant!

Fig. 4. Error versus time step as fraction of Courant time step fo
Case 1~a and r e constant!

Fig. 5. Error versus time step in hours for Case 1

Fig. 6. Error versus time step in hours for Case 2
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 Fig. 7. Error versus time step in hours for Case 3

Fig. 8. Error versus time step in hours for Case 4

Fig. 9. Regression of time step versus number of elements f
Case 1

Fig. 10. Regression of time step versus number of elements f
Case 2
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Dt15
tc

N1.16 (13)

Dt25
0.81•tc

N1.08 (14)

Dt35
0.96•tc

N1.27 (15)

Dt45
1.66•tc

N1.43 (16)

whereN5number of elements; andtc5time of concentration in
hours, computed as indicated in Eqs.~7! and ~11!.

Evaluation of Dynamic Time Step Criteria for Steady
Rainfall

In order to test the new criteria, another numerical experimen
was designed using 0.5, 1.0, 1.25, and 1.5 times the dynamic tim
step determined from Eqs.~13!–~16!. The same mesh sizes used
in the original experiment were used in the validation: 5, 10, 20
25, 50, and 75 elements. The experiment was designed based
bench-scale laboratory experiments run by Yu and McNow
~1964!. The analytical solution matched the laboratory data per
fectly ~Agiralioglu and Singh 1981!. The experiment consists of a
slope of L5144 m ~472.5 ft!; S050.02; and roughnessn
50.009. The rainfall event simulated wasr e519 cm/h~1.731E-4
ft/s! applied for 0.133 hours. These values ofr e anda were used
in the cases wherer e anda were constant. For the spatially vary-
ing r e anda, the following equations were used:

r

r

Fig. 11. Regression of time step versus number of elements fo
Case 3

Fig. 12. Regression of time step versus number of elements fo
Case 4
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r e520.2736•x139.51

a58.0909•e0.0079x

This a accounts for a variation in Manning’s roughness coeffi
cient n from a value of 0.02–0.04 and also allows for a variation
in slope from 0.04 to 0.13.tc was found to be 0.054 h for case 1
and 0.07 h for cases 2, 3, and 4. The time step was calculat
using Eqs.~13!–~16! for each scenario as appropriate. The result
showed that, when the dynamic time step was used, the err
remained below 5%. The 1.25 and 1.5 multiples of the dynam
time step resulted in instability and the solution did not converg
for some mesh sizes. Use of the 0.5 multiple of the dynamic tim
step produced errors that were insignificantly lower than the err
for the time step itself, even though it needed larger input file
and longer computational time. The results are shown in Fig
13–16.

The development cases used Manning’s roughnessn values of
0.02–0.04, which corresponds to a surface slightly rougher tha
bare clay–loam soil~eroded! ~Woolhiser 1975!. The test case had
a Manning’s roughness valuen of 0.009, which corresponds to a
surface slightly smoother than concrete, asphalt, or bare sa
~Woolhiser 1975!. In order to test the dynamic time step criteria
on rougher surfaces that would reflect vegetated conditions, t
writers used a Manning’s roughnessn of 0.1, which corresponds
to areas of sparse vegetation or short grass prairies. The dynam
time step proved to be adequate in this situation, while 1.5 time
the dynamic time step resulted in instability~Fig. 17!.

Evaluation of Dynamic Time Step Criteria for
Unsteady Rainfall

The dynamic time step criteria were tested for unsteady rainfa
conditions. The analytical solution for this type of storm is differ-

Fig. 13. Case 1 evaluation results

Fig. 14. Case 2 evaluation results
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ent from the steady rainfall situation. The problem simulated a
the analytical solution used were taken from Parlange et
~1981!. This solution is only valid for case 1, wherer e is uniform
in space. The storm used for this simulation is of the followin
form:

r e5r e0e~2t/r !~12e~2t/t!! (17)

where r e0 and t are constants. This storm is maximum att
5tm , where tm /t5LN~2!. For this case,r e050.762 cm/h; and
t50.12 hours.

The analytical solution of this problem is

h5~ 1
22e2t/t1 1

2e
22t/t!r e0t (18)

for

x>bar e0
2/3tbE

0

t/tS 1

2
2e2e1

1

2
e22eDde (19)

wheree is a dummy variable.
When inequality~19! is not satisfied, then

h5~et0 /t2e2t/t2 1
2e

22t0 /t1 1
2e

22t/t!r e0t (20)

and

x5baar e0
2/3tbE

0

t/tS et0 /t2e2t/t2
1

2
e22t0 /t1

1

2
e22t/tDde

(21)

where an arbitrary valuet0,t is chosen, giving the valueh for
the calculatedx.

The time of concentration is calculated by replacingx by L in
Eq. ~19! and calculatingt. The solution required a simple numer

Fig. 15. Case 3 evaluation results

Fig. 16. Case 4 evaluation results
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cal integration scheme and Simpson’s 1/3 Rule was used in
case. This solution was compared with the numerical simulat
for the dynamic time step. The results in Fig. 18 show that t
simulation using the dynamic time step had a very small err
while the use of 1.5 times the dynamic time step resulted in
stability.

Implementation and Input-Free Environment

The dynamic time step equations developed in this study could
integrated within any hydrologic computer program, utilizing th
kinematic wave theory. These time steps are functions of the g
size and the time of concentration, the latter being a function
rainfall, slope, and roughness parameters that are readily av
able. The time step then can be calculated automatically, depe
ing on the mesh size that the user chooses. This will preclude
trial-and-error procedure, or the need for very experienced us
that usually accompanies the selection of a time step to integ
the problem accurately.

Summary and Conclusions

Results of the kinematic wave overland flow solution using d
ferent time steps showed that the conventionally used stabi
criterion known as the Courant condition fails to give a time st
estimate that ensures stable and accurate numerical solutions
cordingly, new accuracy-based dynamic time step estimates
the overland flow kinematic wave solution were developed. T
newly developed dynamic time step estimates are functions
grid size, watershed slope, roughness, and time of concentrat

Fig. 17. Case with Manning’s roughnessn50.1 evaluation results

Fig. 18. Unsteady rain test case evaluation results
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For each simulation, characterized by a problem boundary a
initial conditions and mesh size, an optimal time step that in
grates the problem within 5% error was determined. The series
mesh sizes and corresponding optimal time steps were use
develop the dynamic time step. The time step criteria were tes
on a variety of problems, including steady and unsteady rain, a
proved to be adequate for accurate and stable results within
efficient computational time. The criteria can be easily integrat
in flow routing models to choose the optimal time step with min
mal user input.

Acknowledgments

The writers would like to thank Purdue University Agricultura
Research Program Office, Environmental Sciences and Engin
ing Institute, Purdue Research Foundation, and Ms. Melis
Coburn for their support for this research.

Notation

The following symbols are used in this paper:
@B# 5 gradient matrix;
@C# 5 capacitance matrix;
$F% 5 forcing term vector;

F 5 Froude number;
g 5 gravitational acceleration;
h 5 flow depth;
n 5 Manning’s roughness parameter;
q 5 flow rate per unit area;

qa 5 analytical solution forq;
qn 5 numerical solution forq;
r e 5 rainfall excess;

r e0 ,t 5 constants;
Sf 5 friction slope;
S0 5 element slope;
tc 5 time of concentration;
tm 5 time of maximum storm intensity;
V 5 flow velocity;
a 5 Manning’s slope and roughness factor;
b 5 5/3;

Dt 5 time step;
h, j 5 dummy variables; and

u 5 finite difference scheme factor.
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