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Dynamic Time Step for One-Dimensional Overland Flow
Kinematic Wave Solution
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Abstract:  Kinematic wave theory is widely used in modeling a variety of hydrologic processes. Results of applying the kinematic wave
overland flow solution using different time steps showed that the conventionally used stability criterion known as the Courant conditior
fails to give a time step estimate that ensures stable and accurate numerical solutions. Accordingly, a new accuracy-based dynamic ti
step estimate for the one dimensional overland flow kinematic wave solution is developed. The newly developed dynamic time ste
estimates are functions of the mesh size, watershed slope, roughness, excess rainfall, and time of concentration. The new criteria w
developed by comparing the consistent formulation of the Galerkin-Crank Nicholson numerical solution of the kinematic wave equatiol
to the characteristic method-based analytical solution, using different time steps and meshes. For each simulation, characterized
boundary and initial conditions and mesh size, an optimal time step that integrates the problem within 5% error was determined. T¥f
series of mesh sizes and corresponding optimal time steps were used to develop the dynamic time step. The time step criteria were te:
on a variety of problems, including a steady state and time varying rainfall scenarios, and proved to be adequate for accurate and sta
results within an efficient computational time. The criteria can be easily integrated in flow routing models to select the optimal time stej
with minimal user input.
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Introduction the literature. Problems that can be solved analytically require
) ) that rainfall, slope, and roughness vary in space, according to a
The kinematic wave theory has been researched and reported exprescribed mathematical relation. Thus, problems in which rain-
tensively in hydrology literature since Lighthill and Whitham in- fa)| and surface characteristics vary randomly in space have no
troduced it(Lighthill and Whitham 195k It has been applied in analytical solution.
many areas and is now well e_stablishf_ed for modeling a variet)_/ of Higher computational power and the development of spatial
hydrologic processes. Growing enwronmental . and ecologlce}l data analysis tools such as geographic information systeig
concerns have increased the role of the kinematic wave theory inpave made the use of numerical methods to solve these problems
describing and modeling environmental and hydrologic processesyych easier. The one-dimensional kinematic wave equation is
(Singh 1996. The kinematic wave equations, resulting from sim- governed by the continuity equation
plification of the Saint-Venant equations, have many advantages.
Among these are the possibility of analytical solutions for simple oh oV oh ]
geometries and fewer boundary conditions as compared with the Vo thaox T ~rx—ixn (1)
far more complex Saint-Venant equations. Hjelm{é®81), Par- . ) o
lange et al.(1981), Govindaraju et al(1988, 1990, and Singh and the conservation of momentum equation, which is reduced to
(1996 have provided good insights for generating analytical or So=S )
semianalytical solutions for the kinematic wave approximation.
However, except for Singli1996, who provided solutions for by the kinematic wave assumption, whé&fe depth averaged ve-
problems with rainfall, slope, and roughness varying in space, locity; h=vertical flow depthy (x,t) andi(x,t) =rainfall and in-
their analyses dealt only with constant or time-varying rainfall. filtration rates, respectively;Sy=element bottom slope;S;
Problems with spatial variation of rainfall or surface characteris- =friction slope; andx andt represent the space and time do-
tics, such as roughness and slope, are still not well documented inmains, respectively. The derivation of E¢$) and(2) is given by
Chow et al.(1988 and Hendersoi1966, among many others.
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The validity of the kinematic simplifying assumption is con- ness factor. Numerical errors arise if the time step exceeds the

sidered accurate to within 10%Voolhiser and Liggett 1967 if condition in Eq.(6a). This condition is limited by its inability to
L deal with cases where slope, roughness, or rainfall excess input
2_S°> 10 4 varies from element to element. This condition, however, is a
F*ho stability criterion and not an accuracy criterion. Lyn and Goodwin

whereL =length of domainF = Froude number and is equal to (1987 showed that, although a given difference scheme may be
F=(uo/(ghe)®9: andh, anduy=depth and velocity of flow at stable, its convergence may be poor. In other words, if a time step

the downstream end of the overland flow plane under steady-statd2S 10W convergence, then itis too large for accurdsghtar and
conditions, respectively. Segerlind 1995 Limited research has been conducted on criteria

Integrating Eq.(1) with the boundary and initial conditions for a_time S'Fep that wouI_d ensure stability as vyell as accuracy of
over space and using the consistent formulation of the finite- the kinematic wave solution. The task of choosing the proper time

element method yields the time dependent system of ordinaryStep has often been considered a matter of experience. Bajra-

differential equation§ODES: charya and Barr3(1_997) hav_e stated that reducing_ the time step
does not necessarily result in more accurate solutions. They added
[CHN}hew=[CIH{h}oi— At[B]((1—6){a}oigt 6{q}new that optimal solutions are yet to be found. Bajracharya and Barry
(1997 have generated a spatial step based on the truncation error
+A((1=6){F}oiat 0{F}new ®) in the finite difference solution of the Muskingum-Cunge form of

where[C] and[B] are matrices resulting from the finite-element e linear kinematic wave problem. The time step, then, is gener-
solution in space and are referred to in finite-element analysis as@ted for the calculatedx using the Courant condition. Thus, to
capacitance and gradient matric&s= forcing term, i.e., the lat- get optimum results one must vary the Courant condition to get a
eral inflow that is the rainfall excess for an overland flow plane; At from the calculated\x that would ensure the accuracy of the
h=depth of flow:q=flow per unit area equivalent to the value of Problem. This still requires some trial and error, while ignoring
V timesh; 0 is a factor that determines the type of finite differ- the temporal error in the kinematic wave problem. In addition, the
ence scheme solved; and old and new refer to the previous timeMuskingum-Cunge model is limited to situations of flood fore-
step and the actual time step=0, 0.5, 0.67, and 1 for Euler, casts where simplicity and rapidity of computations are spught
central difference, Galerkin, and backward difference schemes,father than accuracyCunge 1998 Hromadka and DeVries
respectively. Mohtar and Segerlii#998 showed that the central (1988 argued after a series of tests varyiag and At that the
difference scheme #=0.5) is the most accurate single step Use of the kinematic wave method for channel routing needs
scheme among the four schemes; thus, it will be used in the €valuation for use in hydrologic models unless guidelines are de-
current study. veloped to control the arbitrary use of the kinematic wave in

Eq. (5) is coupled with Eq(3) to generate a nonlinear system _design studies. They added that kinematic wave programs need
of equations that will be solved for the flow depth at each node INtérnal checks to seledix andAt such that an accurate solution
and time step. For a more detailed description of the finite- IS gchleved. This clgarly shows the need for time step criteria,
element formulation and finite difference solution in time, see Which can be used in overland flow models to ensure accurate
Vieux et al.(1990a, b. solutions for th_e kinematic wave e_quatlon._The cr|'_[er|a should be

Numerical methods require discretization in both space and Part of a user input-free hydrologic modeling environment, thus
time. The size of the element and the time step are crucial to the€liminating the trial-and-error procedures that usually accompany
stability and the accuracy of the numerical scheme used. Previoughe time step selection in watershed modeling.
studies (Courant et al. 1956; Vieux and Segerlind 198%ve The objective of this study is to develop and evaluate an
shown that the actual time step used in the time integration accuracy-based dynamic time step estimate for the numerical so-
scheme must not be longer than the time during which a gravity Iutl.on of the one—dlmensmngl kinematic wave problem.'The cri-
wave front may propagate through the system, or longer than thet€ria can be part of a user input-free hydrologlc modeling envi-
time step variation in the forcing function. The prior condition is fonment. The complexity of the mathematical problem makes an
known as the Courant conditic@€ourant et al. 1956 The Cou- ar_lalytlcal ap_p_roach to thl_s problem_ very d|_ff|cult. The approach in
rant time step for each element may be computed using the celerthis study utilizes numerical experimentation.
ity of a gravity wave by
Methodology for Developing Dynamic Time Step

AX Criter
Teouran® 12 (6a) riteria
(gh)
where Tcouran= Courant time step in seconddx=distance in- Overall Methodology

crement or element length in metegs:= gravitational accelera-
tion in m/$; and h=downstream equilibrium flow depth in
meters.

For the kinematic wave assumption, the critical time step
TcourantC@N be expressed as

The one-dimensional kinematic wave overland flow problem,
governed by Eqs(1) and (3) together with specified boundary
and initial conditions, is solved using constant and varying rain-
fall and Manning’sx for a certain mesh using different time steps.
For each time step, the error between an analytical solution ob-
1S9 %03 tained by the characteristics method and the numerical solution
Tcourant —65 030303 (6b) was computed. A time step versus error graph was generated for
g0y s Lo : : .
this series of solutions. As the value of the time step increased,
wherel =element length in meter§,=watershed slope in m/m;  the error was expected to grow, provided that the spatial discreti-
c is a constant equal to 1.0 in the Sl system and 1.49 in English zation error is small. A time step value exists that will integrate
units; g=gravitational acceleration in nf/sL=slope length in the problem within a specified error. Using a smaller time step
meters;r .= rainfall excess rate in m/s; amd= Manning’s rough- might result in an unnecessarily longer computational time, while
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a larger time step might result in large errors and might even lead

to instability in the solution. The specified problem was solved

using several mesh sizes to generate a relation between mesh size p
and optimal time step. The results are summarized in a regression Read noda coortinate, sement
equation that was used to define a time step estimate. The time of Sopes, roughness, rainfal
concentration, which depends on the excess rainfall, the slope, 2nd boundar condins
and the roughness factor of the watershed, was introduced in the '
equation as a problem specific factor so the criteria can be used
for other problems. The time step estimation equations were
tested using a different problem to ensure the validity of the re-
sults.

Update matrices from

previous fime step.
Numerical Experiment Problem Definition
Accuracy in this analysis was assessed by comparing the numeri- ngﬁiu;aelﬁﬁs[gf)"ﬁ; A
cal solution to the analytical or exact solution in a numerical +6({FY)- 0K (164Qh + 80K
experiment. These solutions are applicable for simple problems
where the spatial distribution of rainfall and the spatial distribu-
tion of surface characteristigdlanning’s roughness and slope
can be expressed by a mathematical relation. The experimental No
scenarios were chosen accordingly. Four cases were considered in -bi<¢
this study: Yfeﬂ_\ gg;::;mn o
1. r,anda constant; ¢ t=ted deplh and fow
2. rgvarying in space and constant;
3. r. constant and varying in space; and m

4. r.anda varying in space
wherer =rainfall excesqr(x,t)—i(x,t) from Eq. (1)]; and « Fig. 1. 2-DSTREAM Flow Chart modified for this research
=Manning’s friction parameter of Ed3).

In order to illustrate the solution accuracy requirement in

terms of time steps and element sizes, nodal values of water [ (=™ |qa—an;|
depths were computed for 5, 10, 20, 25, 50, and 75 elements for e==|>, (%) X 100 (8)
each case. Various time steps were used to integrate the system of ni=1 2j=10%;

ordinary differential Eq.(6) Each scenario was solved using the where e= average percentage errom= number of samp”ng
fO”OWing conditions: (1) Contributing area of unit width has a pOintS in Space;n:number of Samp]ing points in '[imeqa

lengthL equal to 152.4 n§500 ft); (2) the average rainfall excess = analytical solution for flow; andy,=numerical solution for
intensity is 2.74 cm/h (2.5E5 ft/s); (3) the average bottom  fow.

slope is 0.05; and4) the average Manning’s roughness coeffi-
cient is 0.035. For cases whereand « varied in space, the fol-

lowing relations were used: Numerical Solution
.= —0.036+5.49 A finite-element-based overland flow model 2DSTREAM, origi-
© nally developed by Vieux et a(1990a and modified for the pur-
a=6.015 g0-0098« pose of this study, was used for solving the uncoupled sets of
overland flow Eqs(1) and(5). Fig. 1 shows the modified model
wherex=length coordinate along the hillslope in meters. flow chart. Watershed input data such as nodal coordinates, el-

The Courant conditiofiEq. (6)] of each simulation was calcu-  emental slopes, and roughness are read at the beginning of each
lated as well as the time of concentration according to the follow- ryn. The forcing functiorr,(x) then is calculated. Using the ele-

ing equation(Singh 1996 ment and force vector information, the system of equations is
1 (L 1 JUB[ [n (1-B)/p built, updategi, and splyed for new flow .de[it.h vallues. .
tc:_f R [f re(i)di} dn (7 The solution forh is implicit and requires iteration until con-
B Jolaln) vergence to a specified tolerance vatéuéfter convergence oh,

the time is incremented and the solution proceeds in the same
manner by updating the time matrices and evaluating heal-
ues. The model used has been validated for different rainfall and
slope conditiongVieux et al. 1990a; Jaber and Mohtar 1998

where =5/3; L=slope length; andy and¢=dummy variables.
The storm duration was set to exceed the time to concentration

so that preequilibrium, equilibrium, and postequilibrium condi-

tions could be evaluated; thus, the storm length or the duration of

continuous rainfall was set to be 0.4 hours, based upon element

properties. The total simulation time was 1 hour. Analytical Solution

Analytical solutions can be derived for linear problems with
Error Criteria simple geometrical domains where functions for rainfall and wa-

tershed characteristics, such as slope and roughness, are predeter-
The average percentage error was computed for each numericaiined (Chow et al. 1988; Singh 1996Singh (1996 presented a
simulation by the following equation: general form of the analytical solution for rainfall excess and
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Manning’'s «, both varying in space only. Eq9) represents the lutions were compared for each simulation according to(BgA

rising and constant parts of the hydrograph, while @&4) is for response line of average error versus time step was plotted. The
the receding limb of the hydrograph: time step that provided 5% average error was graphically selected
up for each scenario. The selected time steps were plotted against the
h(x) = 1 fxr (£)d (%) mesh size and regressed to generate an equation that would pro-
a(x) Jo ¢ vide the time step that would integrate the kinematic wave equa-
tion with 95% average accuracy. The time of concentration, cal-
1 [x B[ (v (1-B)IB ) ; . ;
_ - culated using Eq(7), was integrated into the regression as a
t(x)= ro(¢)dg dn for O=<t<t, o .
B Jola(n) 0 problem specific factor. For each case, a time step dependent on
(9b) the number of elements and the time of concentration was gener-
and ated.
1 x* g . . .
h(x,x*)= W f re(%)di} (10a) Time of Concentration Estimates
a 0
The time of concentrationt() is defined mathematically as the
[ (x (A=B)B rx[ 1 M8 intersection of the characteristic curi{ex,0) passing through the
txx*)=tr+ =1 | re(£)dg dn igin with the linex=L. The time of trati be de-
BlJo ) origin wi e linex=L. The time of concentration can be de
fined as the time when the maximum flow is reached in the hy-
for t,<t<t; (10b) drograph(thus, it is also sometimes known as time to equilib-

rium). It is typically determined using a version of the kinematic
wave equationMcCuen and Spiess 1995Singh (1996 deter-
mined the general form df. given in Eq.(7).

The time of concentration for each of the three simplified
cases, then would be as follows.

Case 1l andr, constant:

where r,=input rainfall excess ratef =5/3; x=space coordi-
nate;a is a factor of roughness and slope determined from Man-
ning’s equationt, = storm duration in hours;=total simulation
time; x* =intersection of the characteristic curve passing through
the origin with thet=t, line; and& and n=dummy variables.
Using Eq.(9) for a fixed value ofx, a hydrograph may be devel-

oped to calculate depth and discharge of water as a function of a-pyp| L e
time. Similarly, the water profile of the slope for a given time can le=re o (118)
also be calculated from Eq9). ) o .

From Eq.(10b), an expression fok* can be generated as a Case 2 constant and. varies in space:
function oft andx and used in Eqg(10a) to solve for the receding 1/2\Y8 L (m (1-p)/p
part of the hydrograph. This part requires an iterative solution tfg(g) J “0 fe(%)di} dn (11b)
because of the nonlinearity of the resulting equation.

For all analytical solutions that were generalgd in Eq. (8)], Case 3. varies in space;, constant:
space was sampled at each node in the system, while time was FA-BVB i q TUB
sampled at 0.15, 0.30, 0.40, 0.50, 0.75, and 1.0 hour. These values tc=e— f — | ea-BrBgE (110)
were compared with the generated numerical solutipand used B ola(€)

in the error term of Eq(8).
In cases 2, 3, and 4, for points beyond the location of the wave
maximum flow in the rising limb, the solutiofEg. (9)] is not

Several empirical estimations can also be found in the literature
(McCuen and Spiess 1995These are only applicable for case 1

; . . ! problems.
valid, and thus not included in the error calculation. One such relation commonly used is that of Ragan and Duru
(1972:
Time Steps Selected 0.0803nL)06

. . N . te TS (12)
Each of the previously mentioned cases were run using fixed time le

steps of 0.1, 0.25, 0.50,' 0.75,_ 1.0, ar_1d 1.2 times re_spe_ctive Couhere t, is in hours; n=Manning’s roughness coefficient;
rant time step of each simulation. This allows examination of the =length in metersr = rainfall excess in cm/h; an8=slope in
effect of the time step on the accuracy of the solution and assessy/m. The analytical, numerical, and empirical times of concen-
ment of the validity of the Courant condition. The numerical SO- {ration (t.) are shown in Table 1. The numerical was deter-

lution was sampled at each of the nodes and selected times anghined as the time when all the hillslope is contributing to the
compared with the analytical solution, as previously indicated. g

Dynamic Time Step Determination Process .
Adequacy of Courant Condition

Time step criteria for the numerical solution of the kinematic

wave equation were determined following the methodology of The time steps used in developing the new criteria were frac-
Mohtar and Segerling1998, 1999a, b To estimate the time step  tions and multiples of the Courant time step, varying from
needed to integrate the ODE in E®), a numerical experiment 0.1 Teouant (Courant condition time stepto 1.2 Teoyrane EX-

was conducted with the previously mentioned conditions. The ample plots for a 20 element mesh for cas@ Janda constant
four cases involving the spatial variability ofand « were ana- in space at a time step equal to 0.75cqyrant @Nd T courant are
lyzed using six mesh sizes. Each of these 24 scenarios was simushown in Figs. 2 and 3. Fig. 3 shows the numerical instability for
lated using six time steps that were selected as multiples of thetime steps equal to the Courant condition. This instability is
Courant time step of each scenario. Analytical and numerical so-caused by the time step being too large, which proves the inad-
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Table 1. Analytical, Numerical, and Empirical Times of Concentra- 0.008 -
tion in Hours g 0.007 =
- g 0.006
Estimate Case 1 Case 2 Case 3 Case 4 & o005
Analytical 0.21 0.17 0.20 0.17 g 0.004 -
Numerical 0.21 0.18 0.20 0.17 g 0.008
Regan and Dur(1972 0.20 N/A N/A N/A § oo -
0 = - : = ‘
. i . 0 50 100 150 200
equacy of the Courant time step for integrating the overland flow nodes (x) in meters
problem. Fig. 4 is a plot of the error against the dimensionless ~—0.i6 hour  —analytical 0.15 0.3 hour ~anaiytical 0.3
time step calculated aSt/Tcoyanfor case 1. The runs for a time T o7sheur  anaiieaia7s - 069 nour  — anayteal 060

step equal to 1.2T oy ancCONverged only for a mesh of five ele-

ments. The time step equal 1¢,,,,an:did NOt converge for the 25  Fig. 3. 2-DSTREAM solutions compared with analytical solutions
element mesh, and time steps greater than Q.54 did not for 20 element mesh and time step equivalent to Courant time step at
converge for 50 and 75 element meshes. There is a thresholdlifferent times of runoff hydrograph for Case(d@ andr, constank
beyond which the error suddenly increases. Fig. 4 also shows that
the threshold, after which the error drastically increased, varied

with the mesh size. For a mesh of five elements, it was greater 15.00 1
than 1.2Tcopane While for 50 elements, it was between
0.5 Teourant@Nd 0.75T courane This proves that the Courant con- & 10.00
dition time step is not a reliable criterion for accuracy and stabil- 5
ity. New criteria need to be developed that would take the system & gggl S
characteristics into consideration.
0.00 - . : : ‘

- ) 0 02 04 06 08 1 12 14
Dynamic Time Step Estimates dimensionless time step
The results generated in the numerical experiments correspond to —e—5elements  —8—10 elements —&— 20 elements
error estimates for each of the six meshes and the six different ——25 elements —%—50 elements ——75 elements

time steps for each of the four cases. The error was calculated for

each of the solutions that converged. The error was plotted versug™ig- 4. Error versus time step as fraction of Courant time step for
the time step. The results are shown in Figs. 5—8 for cases 1—4£ase (e andr constant

respectively.

As expected, error decreased considerably as the number of 15
elements increased. It also was observed that the error remained ,f /
more or less constant or increased very slightly to a certain L0l /]
threshold, where it increases drastically or even where no conver- 5 / /
gence occurs in the solution. g

5 /
The threshold time steps were determined graphically using W
Figs. 5—8. The largest time step that resulted in less than 5% error 0 : : : .

was chosen for each of the six meshes selected. These time steps 0 0005 oo 0015 o
were divided by the time of concentration and regressed against time stepin hours

the number of elements in each mesh. A power best fit was gen-

erated for each case lifEigs. 9—12. The power line was chosen —#—106lements —&- 20 elements —i— 25 elemenis
because it best fit the shape of the generated curves. 2% S0deEns - 75 daeol

The dynamic time step estimatest in hours, for the four

cases are, respectively Fig. 5. Error versus time step in hours for Case 1

15 Q)r
© 0.005 4
8 0.004 T / /
y o 10 - —
£ 0003 &
E 0,002 o
= et =
S 0.001 @ 5 |
T 04=E = - - - e oo SOOI
'.—2 -0.001 € 20 40 60 80 100 120 140 160 180
Nodes (x) in meters 0 J J J J '
] 0.01 0.02 0.03 0.04 0.05
——0.15 hour —— analytical 0.15 —&— 0.3 hour —>¢— analytical 0.3
—%—0.4 hour —e—analytical 0.4 —+— 0.5 hour ——analytical 0.5 time step in hours
~—==—0.75 hour analytical 0.75 0.89 hour —&— analytical 0.89
—&o—5elements —#— 10 elements —&— 20 elements
Fig. 2. 2-DSTREAM solutions compared with analytical solutions —%— 25 elements —%— 50 elements —@—75 elements
for 20 element mesh and time step of 0.75 Courant time step at ) _ _
different times of runoff hydrograph for Case(d andr, constant Fig. 6. Error versus time step in hours for Case 2
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o® o 004 acs
time step inhours

- 10 dlements -+ 20 dlements %25

—— 50 elements - 75 elements

Fig. 7. Error versus time step in hours for Case 3

error %

0 0.01 0.02 0.03 0.04 0.05
time step in hours

—a— 10 elements —4— 20 elements —¢ 25 elements
—%— 50 elements —— 75 elements

Fig. 8. Error versus time step in hours for Case 4

012 4

o
>
four

8

o

time step in hours
o O © ©
R 8
Vi i

;(

0 20 40 60 80
number of elements
—o—tin'estep—Pwver(tin'eslep)|
Fig. 9. Regression of time step versus number of elements for

Case 1
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Fig. 11. Regression of time step versus number of elements for
Case 3

t

Aty =T I® (13)
_08Lt,
Aty=—Ft08 (14)
0.96 1,
Atz= NTZ7 (15)
166t
Aty=—raz (16)

whereN=number of elements; and=time of concentration in
hours, computed as indicated in E¢8) and (11).

Evaluation of Dynamic Time Step Criteria for Steady
Rainfall

In order to test the new criteria, another numerical experiment
was designed using 0.5, 1.0, 1.25, and 1.5 times the dynamic time
step determined from Eq§13)—(16). The same mesh sizes used
in the original experiment were used in the validation: 5, 10, 20,
25, 50, and 75 elements. The experiment was designed based on
bench-scale laboratory experiments run by Yu and McNown
(1964. The analytical solution matched the laboratory data per-
fectly (Agiralioglu and Singh 1981 The experiment consists of a
slope of L=144m (472.5 f§; $=0.02; and roughness
=0.009. The rainfall event simulated was=19 cm/h(1.731E-4

ft/s) applied for 0.133 hours. These valuesrgfanda were used

in the cases whene, anda were constant. For the spatially vary-
ing r. anda, the following equations were used:

0.07
p 006 \
2005+ ‘\\
£ 004
8 \
£o03 N
g 002 T
F 001 e
0 : ; . .
0 20 40 60 80
Number of elements

t—o—time step === Power (fime step ) ‘

Fig. 10. Regression of time step versus number of elements for Fig. 12. Regression of time step versus number of elements for

Case 2

Case 4
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Fig. 13. Case 1 evaluation results

Fig. 15. Case 3 evaluation results

re=—0.2736 x+39.51
o= 8.0909 e0-007% ent from th_e steady _rainfall situation. The problem simulated and
the analytical solution used were taken from Parlange et al.

This a accounts for a variation in Manning’s roughness coeffi- (1981). This solution is only valid for case 1, whergis uniform
cientn from a value of 0.02—0.04 and also allows for a variation in space. The storm used for this simulation is of the following
in slope from 0.04 to 0.13, was found to be 0.054 h for case 1  form:
and 0.07 h for cases 2, 3, and 4. The time step was calculated o e(—UD (] — (-t 17
using Eqs(13)—(16) for each scenario as appropriate. The results Fe=Teo® (1-e ) 17
showed that, when the dynamic time step was used, the errorwhere r,, and v are constants. This storm is maximum tat
remained below 5%. The 1.25 and 1.5 multiples of the dynamic =t,,, wheret,,/T=LN(2). For this caser,=0.762cm/h; and
time step resulted in instability and the solution did not converge t=0.12 hours.
for some mesh sizes. Use of the 0.5 multiple of the dynamic time  The analytical solution of this problem is
step produced errors that were insignificantly lower than the error

for the time step itself, even though it needed larger input files h=(3—e ""+3e 2/ M)reor (18)
and longer computational time. The results are shown in Figs. ¢,
13-16.

The development cases used Manning’s roughnesgues of x>Bo¢r2’3frB s E_ - le‘zé de (19)
0.02-0.04, which corresponds to a surface slightly rougher than - €0 0o \2 2

bare clay—loam soileroded (Woolhiser 1975 The test case had ) )

a Manning’s roughness valueof 0.009, which corresponds to a  Wheree is a dummy variable.

surface slightly smoother than concrete, asphalt, or bare sand When inequality(19) is not satisfied, then

(Woolhiser 1975 In order to test the dynamic time step criteria h=(elo/T—e~t"—Je=2to/r4 la=2tn) o (20)
on rougher surfaces that would reflect vegetated conditions, the
writers used a Manning’s roughnes®f 0.1, which corresponds

to areas of sparse vegetation or short grass prairies. The dynamic t/ 1 1

time step proved to be adequate in this situation, while 1.5 times ~ X= Baarﬂ%ﬁf (et"”—e‘”— 5672t0/7+ 5672“7 de
the dynamic time step resulted in instabilifyig. 17). 0 21)

where an arbitrary valug,<t is chosen, giving the valuk for
the calculatedk.
The time of concentration is calculated by replaciigy L in

The dynamic time step criteria were tested for unsteady rainfall Ed-(19) and calculating. The solution required a simple numeri-
conditions. The analytical solution for this type of storm is differ-

. [/ i}

£ /| /
£
£ /]
2 2
0 SR sxocpno Sl S5
02 04 06 08 1 12 14 16

action of dynervic thve step fraction of dynamic time step

—+— 10 elements —#- 20 elements —+—25¢€l —e—10 elements —=— 20 elements —— 25 elements
- 50 elements —%— 75 elements —¢ 50 elements —%— 75 elements

and

Evaluation of Dynamic Time Step Criteria for
Unsteady Rainfall

error %
S

Fig. 14. Case 2 evaluation results Fig. 16. Case 4 evaluation results

JOURNAL OF HYDROLOGIC ENGINEERING / JANUARY/FEBRUARY 2002 / 9

J. Hydrol. Eng., 2002, 7(1): 3-11



Downloaded from ascelibrary.org by Texas A&M University on 03/31/23. Copyright ASCE. For personal use only; all rights reserved.

8 - For each simulation, characterized by a problem boundary and
initial conditions and mesh size, an optimal time step that inte-
61 — grates the problem within 5% error was determined. The series of
mesh sizes and corresponding optimal time steps were used to
develop the dynamic time step. The time step criteria were tested
o / / on a variety of problems, including steady and unsteady rain, and
proved to be adequate for accurate and stable results within an
0 ' ‘ l?:ﬁL/ ‘ , efficient computational time. The criteria can be easily integrated
0 02 0.4 06 08 1 12 14 16 in flow routing models to choose the optimal time step with mini-
fraction of dynamic time step mal user input.

error %
>

[—#—20 elements —8—25 elements —&— 50 elements —<— 75 elements |

Fig. 17. Case with Manning’s roughness=0.1 evaluation results Acknowledgments
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while the use of 1.5 times the dynamic time step resulted in in-

stability. Notation

) ) The following symbols are used in this paper:
Implementation and Input-Free Environment [B] = gradient matrix;

L . o [C] = capacitance matrix;
The dynamic time step equations developed in this study could be {F} = forcing term vector:

integrated within any hydrologic computer program, utilizing the F = Froude number:

kinematic wave theory. These time steps are functions of the grid = gravitational acceleration;

size and the time of concentration, the latter being a function of h = flow depth;

rainfall, slope, and roughness parameters that are readily avail- n = Manning’s roughness parameter:
able. The time step then can be calculated automatically, depend- q = flow rate per unit area;

ing on the mesh size that the user chooses. This will preclude the o — apalytical solution forg;
trial-and-error procedure, or the need for very experienced users g, = numerical solution for;
that usually accompanies the selection of a time step to integrate r. = rainfall excess;

the problem accurately. leo,T = constants;

S; = friction slope;
. Sy = element slope;
Summary and Conclusions t. = time of concentration;
t

. . . . . = time of maximum storm intensity;
Results of the kinematic wave overland flow solution using dif- ¥ y

; : o VvV = flow velocity;
ferent time steps showed that the conventionally used stability a = Manning's slope and roughness factor;
criterion known as the Courant condition fails to give a time step B = 5/3: '
estimate that ensures stable and accurate numerical solutions. Ac- _ timé step:

cr?rdlnglyl/, ndevf\f accl:(l_Jracy-b_ased dynalml_c time st((ajp es|t|mzzte§rgor m, &€ = dummy variables; and

the overland flow kinematic wave solution were developed. The 0 = finite difference scheme factor.
newly developed dynamic time step estimates are functions of

grid size, watershed slope, roughness, and time of concentration.
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