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Abstract

An optimization methodology for designing groundwater quality monitoring networks applica-
ble to stochastic flow fields is presented and evaluated. The approach sets itself apart from
previous techniques by incorporating the time dimension directly into the objective function. This
function is extremized using a directed partial enumeration strategy guided by physical considera-
tions related to transport processes. The result is a set of monitoring well locations and a sampling
schedule that minimizes plume characterization error while satisfying constraints on the maximum
number of wells and allowable number of active wells. The method is evaluated using hypotheti-
cal plumes with varying degrees of heterogeneity. Results indicate that the proposed approach is
successful in generating near-optimal sampling networks that satisfy all imposed constraints.
Monitoring networks with as little as three active wells and a total of 12 wells are found to
provide adequate plume characterization for low toxicity contaminants. q 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Groundwater is an important natural resource that is exploited throughout the world
as a source of domestic and irrigation water. The focus of groundwater investigation has
traditionally been on quantification of this resource, but increasing detections of toxic
contaminants during the past two decades, including plant nutrients, pesticides, bacteria,

Ž .non-aqueous phase liquids NAPLs , heavy metals and radionuclides have shifted this
focus towards assessment and protection of groundwater quality as well as prevention,
remediation and containment of contamination. The United States Environmental Protec-

Ž . Ž .tion Agency US EPA , for example, under the Clean Water Act CWA currently
requires local water utilities to design and implement Well-Head Protection Programs
Ž .WHPP aimed at preventing contamination of the resource. Water providers are
required to delineate well capture zones, inventory existing and potential contamination
sources within these zones and develop contingency plans incorporating remedial
andror containment measures in the event that contamination would occur. Detection
and characterization of contaminated subsurface areas are crucial prerequisites to the
implementation of remediation strategies and are typically performed by monitoring
groundwater over a network of sampling wells. The design of such networks must
consider the natural heterogeneity of the subsurface, aquifer flow characteristics, the

Žpresence of potential sources of contamination e.g., landfills, chemical storage facili-
.ties as well as budgetary constraints. A large body of literature exists proposing

different approaches for designing groundwater quality monitoring networks. Andricevic
Ž .1996 pointed out that these approaches can in general be based on geostatistical

Žmethods e.g., Carrera et al., 1984; Rouhani, 1985; Rouhani and Hall, 1988; McLaughlin
. Žand Graham, 1986 , optimization methods e.g., Olea, 1984; Hsueh and Rajagopal,

1988; Hsu and Yeh, 1989; Loaiciga, 1989; Andricevic, 1990; Hudak and Loaiciga,
. Ž1992 , methods based on extensive simulation e.g., Massmann and Freeze, 1987; Meyer

. Žand Brill, 1988 , or the transfer function method e.g., Andricevic and Foufoula-Geo-
.rgiou, 1991 .

Monitoring network design is often formulated mathematically as an optimization
problem in which an objective function is to be minimized or maximized over a given

Ž .search space subject to a set of constraints Loaiciga et al., 1992 . The ultimate objective
of the design process is generally to minimize the total cost of the system, which

Ž . Ž .includes: 1 installation, operation and maintenance costs; 2 the environmental cost
Ž .associated with non-detection of the contaminant; and 3 the costs incurred by

over-designing or under-designing remediation or containment systems due to inaccurate
plume characterization. However, for simplicity, objective functions are most often

Ž .linked to surrogate goals such as: 1 minimizing the error variance of Kriged concentra-
Ž . Ž .tions at unmonitored locations Ben-Jamaa et al., 1995; Lee and Ellis, 1996 ; 2

Ž . Ž .minimizing the undetected contaminant mass Mahar and Datta, 1997 ; 3 maximizing
Žthe number of detections Meyer and Brill, 1988; Meyer et al., 1994; Storck et al.,

. Ž . Ž . Ž .1997 ; 4 maximizing model discrimination Knopman and Voss, 1991 ; or 5 maxi-
mizing a weighted sum of sub-objective functions including areal coverage and monitor-

Ž .ing value Hudak et al., 1995 . A common constraint imposed on the design is to set a
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maximum total cost for the physical network, which is often replaced by a constraint on
the maximum number of wells to install and use.

The search space for optimization generally consists of two- or three-dimensional
Ž .space, but seldom includes time. Loaiciga et al. 1992 suggested that time may be

important in changing the objectives of monitoring from contaminant detection to plume
characterization and back to detection in response to the results of sample analyses. This
is, however, a relatively coarse delineation of time effects, which does not deal
specifically with the effects of contaminant transport dynamics on network design.

Ž .Grabow et al. 1993 evaluated the effects of the time at which samples were taken and
of the density of the well network on the accuracy of plume characterization using data
from two existing sites. Their results indicated that because of the dispersive spreading
of the plume with time, it was possible to use a network of lower density, without loss
of accuracy, if characterization was to be performed later after the release of a
contaminant. They used this information to design networks for snapshots of the plume,
but did not provide a methodology for merging the resulting networks into a single
design that would be applicable at multiple times and provide a consistent characteriza-

Ž .tion accuracy. Knopman and Voss 1991 recognized the importance of consecutive
sampling times on the characterization of contaminant plume dynamics. They developed
not only monitoring networks, but also a set of sampling schedules indicating which

Žwells to sample at a given time in order to maximize characterization accuracy or, more
.specifically, to maximize model discrimination while minimizing installation and

Ž .sampling costs. Their results indicate that only a subset of the network the active wells
needs to be sampled at a given time, and this time-dependent subset essentially tracks
the progression of the plume. Sampling the active wells provides accurate characteriza-
tion of plume dynamics at a lesser cost than if the entire network was sampled each
time. The generality of their results was, however, limited by the fact that they were
obtained a posteriori for a specific tracer transport experiment and their design networks
were essentially geometrically one-dimensional, consisting of rows of wells located at
various distances from the injection point. It can be expected that a fully two-dimen-
sional network geometry would provide equal accuracy, but with a smaller total number
of wells through elimination of redundancies. In addition, an a priori design methodol-
ogy is needed so that monitoring networks can be designed and installed prior to a
contamination event. Dynamic a priori network design methodologies were proposed by

Ž . Ž .James and Gorelick 1994 and Mahar and Datta 1997 for source identification and
plume delineation, respectively. The basic strategy employed in these studies was to
incrementally add new wells, over time, to a small existing network. Wells were added
where they would provide maximum new information about the contaminant and the
addition process was stopped when either a pre-selected accuracy or a cost constraint
was reached. Although the design methodology was dynamic in these studies, the
resulting networks did not provide a characterization of the dynamics of the contami-
nant, but only of its extent or source. Characterizing contamination dynamics, as in the

Ž .work of Knopman and Voss 1991 is, however, very important because the rates of
decay, movement and spreading of a plume are all crucial factors in deciding whether or
not remedial measures are necessary, where to target them and how to size them. It is
therefore clear that there is a need for the development of a priori network design



( )H.J. Montas et al.rJournal of Contaminant Hydrology 43 2000 271–301274

methodologies that guarantee accurate characterization of contaminant plume dynamics
at low cost. The time dimension must be included in the search space used to design
such networks and the result should consist of both a set of monitoring wells and a
sampling schedule for these wells. Indeed, in this dynamic situation, the issue is not only
how often to sample, but also which wells to sample at a given time to maximize
accuracy while minimizing costs. The cost minimization objective must then consider
both the total number of wells and the number of active wells, which must be minimized
conjunctively to ensure both low construction costs and low operational costs.

The objectives of this study are to present a methodology for designing groundwater
quality monitoring well networks in space and time and to evaluate the performance of
the resulting networks. The network design objective entails both the determination of
well locations and of a sampling schedule representing sampling activity for individual
wells as a function of time. The goal is to obtain monitoring networks that maximize
contaminant plume characterization accuracy with the smallest possible number of
active wells and a small total number of wells. The active wells are expected to be a
time-dependent subset of the well field that essentially tracks plume progression with
time. The objective function proposed in this work is defined in terms of the spatial
moments of the contaminant plume and their time evolution. This function is evaluated

Ž .using hypothetical truth reference plumes generated stochastically to permit a priori
design based on the physical characteristics of the site under study. The objective
function is extremized using a two-step procedure relying on partial enumeration guided
by physical principles that avoid the potential of getting trapped in a local minimum.
The proposed methodology is applied to the generation of well networks and sampling
schedules for two hypothetical situations.

The proposed objective function for contaminant plume characterization and its
associated constraints are presented in Section 2.1. The method used for evaluating the
objective function is presented in Section 2.2. The procedure used to extremize this
function and the search space over which optimization is performed are discussed in
Section 2.3. Section 3 presents the application of the proposed approach to transport
scenarios in two-dimensional, horizontal, heterogeneous conductivity fields. The sum-
mary of the work and the concluding remarks are presented in Section 4.

2. Methodology

The monitoring system is developed by considering the movement of a conservative
contaminant in a heterogeneous flow field caused by spatial variability in the porous
medium hydraulic conductivity. It is assumed that the flow is steady and there is no
change in the velocities of groundwater within the time scale of interest. This assump-
tion does not significantly deviate from reality since groundwater levels and piezometric
head change very slowly with time such that it is safe to deal with steady flow
conditions. We further assume that a three-dimensional aquifer can be replaced by a
depth-averaged two-dimensional domain through which simulations can be simplified

Ž .with minor deviations from reality. As discussed by Hassan et al. 1998 , there are
situations in which two-dimensional simulations are poor approximations of natural
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three-dimensional systems. However, two-dimensional models are of value when study-
Ž .ing problems at the regional scale Dagan, 1986 . The regional scale is defined for

aquifers whose planar dimension is much larger than the aquifer thickness. In this case,
formation properties are averaged over depth and are regarded as functions of the

Ž .horizontal dimension only Rubin, 1990 . Steady, uniform, and two-dimensional flow
prevails at the natural gradient tracer experiment in the sand aquifer that was carried out

Žat the Borden site Curtis et al., 1986; Freyberg, 1986; Mackay et al., 1986; Roberts et
. Ž .al., 1986; Sudicky, 1986 . Freyberg 1986 found that the motion of the plume and its

Ž .center of mass is essentially horizontal. Barry et al. 1988 also found the assumption of
two-dimensional flow to yield good results. In the other, commonly cited, natural tracer

Ž .test performed at the Cape Cod site, LeBlanc et al. 1991 found that the plume centroid
Ž .moved vertically downward for only a small distance and this enabled Deng et al. 1993

to reproduce the field spatial moments using a two-dimensional stochastic model. The
Ž .Columbus site Boggs et al., 1992 has a horizontal dimension about 10–100 times

larger than the aquifer thickness and as such can also be considered two-dimensional. It
is therefore clear that two-dimensional models can be very useful tools to study and
predict contaminant behavior in natural aquifers and can be used to design monitoring
well networks do detect and characterize plume spreading and evolution in regional
aquifers.

2.1. Definition of the objectiÕe function

The overall objective of the design process is to determine an optimal set of
Ž .groundwater monitoring well positions network and a well activity schedule such that

arbitrary contaminant plumes evolving in the vicinity of these wells are characterized
with maximum accuracy at minimum cost by sampling the design network according to
its design schedule. The cost constraint in this objective is linked to installation,
maintenance, sampling, analysis and labor costs, which are in turn proportional to the
total number of wells in the network and the number of active wells determined by the
sampling schedule. For this reason, the cost minimization objective is replaced by a
minimization of the total number of wells and a constraint on the maximum number of
active wells. Actual cost may, however, be used if actual figures of individual costs are
known for a given location and an example of this is presented later in the paper. In
addition, the objective of maximizing plume characterization accuracy is replaced by a
minimization of plume characterization error, which is equivalent but mathematically
simpler.

Ž .Let X s x , y ,t denote the coordinates of a point i in two-dimensional space andi i i i
� 4time and Vs X , X , . . . be the set of potential space–time sampling points for the1 2

zone to be monitored. Define M t as the set of sampling locations at a given time t
Ž .active wells and M as the union of all sampling locations over the duration of

Ž .monitoring T well network . The design problem is to identify the subset M of V with
Ž . Ž t.the property that: 1 monitoring groundwater over the elements of M through M

Ž . Ž .minimizes contaminant plume characterization error, e M ; 2 M has minimal cardi-
Ž . tnality; and 3 the cardinality of the set of active wells M ;M at any sampling time t

is smaller or equal to a preset maximum value, N .aw
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Parts 1 and 2 of the design problem are in opposition to one another since decreasing
< < Ž .M generally leads to increases in e M and vice versa. The problem formulation is
therefore ill-posed, and solving it requires, first, that it be reformulation in a well-posed

Ž .form. This can be achieved by either: 1 using a composite objective function that, for
< < Ž . Ž . < <example, is a weighted linear combination of M and e M ; or 2 using either M or

Ž . Ž . < <e M as the objective function and a constraint on the maximum value of e M or M ,
respectively. The second approach is adopted here because of the lack of information on

< < Ž .appropriate combinations of M and e M . An investigation of possible combinations
based on total cost will be pursued in future work. The proposed objective is:

Minimize: e M , M;VŽ .
< <Subject to: M FNmax

t w xand: M FN , ; tg 0,Taw

where N is the maximum total number of wellsmax

In this work, contaminant plumes are characterized at any time t by the mass of
contaminant that they contain, the position of their centroid in the x and y directions
and their extents in both directions. These characteristics are described by the zeroth,

Ž .first and second centered spatial moments of the plume Grabow et al., 1993 , which are
defined by:

m t s nc x , y ,t d AŽ . Ž .H0
A

nxc x , y ,t d A nyc x , y ,t d AŽ . Ž .H H
A A

m t s ; m t sŽ . Ž .1 x 1 y

nc x , y ,t d A nc x , y ,t d AŽ . Ž .H H
A A

nx 2c x , y ,t d AŽ .H
A 2m t s ym t ;Ž . Ž .2 x 1 x

nc x , y ,t d AŽ .H
A

ny2c x , y ,t d AŽ .H
A 2m t s ym tŽ . Ž .2 y 1 y

nc x , y ,t d AŽ .H
A

Ž . Ž .where c x, y,t is contaminant concentration at point x, y and time t, n is the porosity
Žof the aquifer, and the integration is performed over all space area in 2D and volume in

. Ž t.3D . The plume characterization error at time t: e M is defined in terms of thet

difference between spatial moments calculated based on concentrations sampled over M
Ž Ž ..identified by a circumflex, e.g., m t and the true moments of the referenceˆ 2 y

Ž . tconcentration plume calculated over V . Since M consists of a set of discrete
locations, the integrals in the above equations are replaced by sums, for example:

< t <M1
m t s c tŽ . Ž .ˆ Ý0 it

D M is1
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where M t is the set of active wells at time t, D M t is the spatial density of the active
Ž 2 . Ž .well network wellsrm and c t is the concentration of contaminant in groundwateri

sampled at the ith element of M t.
Since there is more than one spatial moment that needs to be reproduced by the

sampling network, the plume characterization error at time t is defined as the maximum
of the absolute values of the relative errors of estimated plume moments at that time:

t t t t t t< < < < < < < < < <e M smax e M , e M , e M , e M , e MŽ . Ž . Ž . Ž . Ž . Ž .t 0 1 x 1 y 2 x 2 y

where

m t ym tŽ . Ž .ˆ 0 0te M sŽ .0
m tŽ .0

m t ym t m t ym tŽ . Ž . Ž . Ž .ˆ ˆ1 x 1 x 1 y 1 yt te M s e M sŽ . Ž .1 x 1 y3 3
m tm t( Ž .Ž . ( 2 y2 x

3 33 3
m t y m tŽ . Ž .ˆ( (m t y m t( (Ž . Ž .ˆ 2 y 2 y2 x 2 xt te M s e M s .Ž . Ž .2 x 2 y3 3

m tm t( Ž .Ž . ( 2 y2 x

Note that the relative error on the centroid is scaled by the plume extent rather than
the true centroid position to provide independence from the origin of the coordinate

Žsystem used to calculate the moments the plume extent is estimated as three times its
standard deviation; for a gaussian plume, this would encompass 99% of the contaminant

.mass — Fischer et al., 1979 . Also, the error on the second moment is expressed
directly in terms of plume extent, which is more physically meaningful than m . Several2

Ž .alternative error estimators and combinations to form e were tested prior to selectingt

those presented above. The alternatives for individual moments included absolute errors,
absolute values of absolute errors, relative errors with the first moment divided by m1

and relative errors on m rather than its square root. Combinations included the sum of2

individual moment errors, the sum of the squares of individual moment errors and the
maximum of individual moment errors. In most cases, a single moment was found to
dominate the error for nearly all sampling times and the corresponding error estimators
were discarded. The final selection of estimators, presented above, was found to give the
most variability in dominant moment error over time and to have a straightforward
physical interpretation.

The contaminant plume characterization error of the network for a monitoring
Ž . w Ž t.x w xduration of T is selected to be: e M smax e M , tg 0,T . This equation is alsot

t
< < < t <the objective function to be minimized subject to the constraints on M and M stated

previously. Here, some alternatives were again evaluated prior to selecting the above
formulation. The mean characterization error from 0 to T and the square root of the

Ž .mean of characterization errors squared RMSE from 0 to T were considered, but
discarded as objective functions for design. Minimizing the mean error, for example,
would not guarantee excellent performance of the designed network for arbitrary
sampling times unless the standard deviation of errors was also minimized or at least
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constrained. The RMSE, on the other hand, combines mean error and standard deviation
2 2Ž .(in the form of a single euclidean error measure RMSEs s qe ; Neter et al., 1990 ,e

but was judged more difficult to interpret, and, hence, less suitable for design than the
maximum error. The mean and standard deviation of characterization errors, while not
used for design, are used later in this work as a posteriori indicators of the performance
of networks designed based on the maximum error.

The use of the zeroth to second spatial moments may slightly limit the degree of
characterization provided by the designed system. Errors in the third and fourth spatial

Ž . Ž .moments, which describe the asymmetry skewness and peakedness kurtosis of a
Ž .spatial distribution Kendall and Stuart, 1977 can be easily added to the objective

function. This was not pursued in this study because evaluating these moments signifi-
cantly increases computational time and because a network that accurately reproduces
the lower spatial moments is expected to provide at least fair estimates of asymmetry
and peakedness if they become necessary.

2.2. EÕaluation of the objectiÕe function

In practical problems of monitoring network design, the true contaminant plume is
the unknown, and, therefore, it is impossible to determine the characterization error
associated with a design M a priori. This difficulty can be dealt with by basing the

Ž . Ž .design on one or more hypothetical truth or reference plume s generated by a
Ž .transport model Massmann and Freeze, 1987 . Uncertainties associated with the highly

heterogeneous nature of subsurface hydraulic properties have made Monte Carlo simula-
tion a primary technique for generating reference and test plumes used in monitoring

Ž .well network design Loaiciga et al., 1992 . In many instances, individual realizations
Ž .are used for the design e.g., Mahar and Datta, 1997; Storck et al., 1997 , but this is

computationally expensive. Basing the design on the ensemble-averaged plume, which
represents the expected value of contaminant concentration throughout the zone being
modeled, is expected to be much more efficient from computational and cost perspec-
tives, and is the approach used in this work. Further efficiency improvements can also
be achieved by using accurate perturbation-based or volume-averaged equations for the

Ž .simulations as demonstrated by Hassan et al. 1997, 1998 . Network design methods
Ž .based on ensemble statistics in the time domain were also proposed by Massmann and

Ž . Ž .Freeze 1987 and Morisawa and Inoue 1991 .
The truth plumes used for evaluating the proposed objective function during the

Ž .design process are obtained in a manner similar to the work by Hassan et al. 1997 . We
briefly review the approach employed to generate independent plume realizations. It is
assumed that the studied domain is rectangular and inscribed into the horizontal plane
with constant head along the boundaries located up-gradient and down-gradient from the
contaminant source and no flow across the other two boundaries. The conductivity at
any point in the domain is described by KsK e f where K is the constant geometricG G

Ž .mean conductivity and f is the log conductivity deviation: fs log KrK . The logG

conductivity deviation is assumed to form a statistically homogeneous, isotropic, and
second-order stationary random field. This allows the description of this heterogeneity



( )H.J. Montas et al.rJournal of Contaminant Hydrology 43 2000 271–301 279

by a limited number of parameters, namely the log K variance: s 2, correlation scale: lf
Ž .and lag covariance function: Cov s , where s is the spatial lag. We assume anf

Ž . 2 y srlexponential distribution for the spatial correlation of the log K field: Cov s ss e .f f

Random conductivity fields that respect these statistics are generated using a spectral
Ž .method Hassan et al., 1997 . Given these settings, the flow equations, represented by

the mass balance equation and Darcy’s law, are solved using a block-centered finite
difference method. The partial differential equation governing the groundwater flow is
discretized and locally applied for each block of the discretized conductivity field. This
yields a set of linear equations with a size equivalent to the number of nodes
representing the studied domain. These equations are directly solved for the nodal heads
at the centers of the domain blocks. In order to compute the groundwater flux at the
interface between two adjacent blocks, the inter-block conductivity is obtained by
harmonic averaging the conductivity of the two blocks. This harmonic average is then
multiplied by the head gradient across the interface to obtain the flux and then divided
by the porosity to obtain the velocity field. For more details regarding the solution of the
flow equations and the accuracy of the solution in terms of local mass balance, global
mass balance, boundary effects, and head and velocity stationarity the reader is referred

Ž .to Hassan et al. 1998 .
Having obtained the velocity field for each realization of the heterogeneous conduc-

tivity field, the solution of the transport equation and the spatio-temporal evolution of
the concentration field are obtained by employing a random walk, particle tracking
technique. The random walk method provides a suitable technique that does not require
any grid for computations, except the grid that was originally used to obtain the velocity
field. In addition, numerical dispersion, which is a common problem with finite
difference and finite element methods for the solution of the advection–dispersion

Ž .equation, does not exist in the particle tracking method Kinzelbach and Ackerer, 1986 .
Ž .Results of Moltyaner et al. 1993, Fig. 12 have shown that the random walk method

completely eliminates numerical dispersion. This is important because numerical disper-
sion causes artificial spreading of contaminant plumes in excess of that which results
from physico-chemical processes and therefore produces inaccurate predictions of the
second spatial moment of these plumes. The idea of the particle tracking method is to
replace the initial contaminant mass with a large number of particles, NP, of equal mass,
m, and trace these particles in the space–time domain. The initial concentration, C ,0

Ž . Ž .considered deterministic and constant, is given by C s NPm r nV , where V is the0
Ž . 3 4area of the initial solute pulse. Ahlstrom et al. 1977 suggest that 10 –10 particles

may be sufficient for a one-component model. We used 2500 particles in all the
transport simulations performed in this study. At each time step, the concentration
distribution is approximated as

C x ,t s m X t ,t h xyX tŽ . Ž . Ž .Ž . Ž .Ý np np
npgNP

where nps1, 2, 3, . . . , NP is the particle index, NP is the total number of particles used
Ž . thto simulate the continuous solute mass, X t is the position of the np particle at timenp

Ž . Ž .t, which was initially at X 0 , m X ,t is the mass associated with that particle, andnp np
Ž .h x projects the contribution of all particles in a small neighborhood around point x to
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the concentration value at that point. The most simple choice for h is a box function
with value 1ra inside an area a centered at x and zero, otherwise. In this work,
concentration values were projected to the blocks used in the finite difference discretiza-
tion of the flow equation. The positions of the particles are updated at each time step

Ž .according to the random-walk equation Kinzelbach, 1988; Tompson and Gelhar, 1990
1r2

X sX q V X ,t qDPd V X ,t D tq 2 d V X ,t D t PZŽ . Ž . Ž .Ž . Ž .tqD t t t t t

where X is the updated position of the particle that was at X in the previous timet q D t t
Ž .step, V X , t is the velocity vector at the old position at time t, d is the local scalet

dispersion tensor, D t is the time step, and Z is a vector of normally distributed random
numbers of zero mean and unit variance.

The particle-tracking experiments are performed in the inner zone of the flow domain
that is not affected by the boundaries. The initial pulse is released within this inner core
and the simulation is terminated before the plume begins to exit this region. Accuracy
and convergence issues pertaining to the solutions of the flow and transport equations

Ž .are discussed in detail in Hassan et al. 1998 . Simulation results obtained on individual
realizations at a given time t are then averaged using 1200 realizations to form the
ensemble-averaged plume at time t. The succession of ensemble-averaged plumes from

Ž .time 0 to T forms the time-dependent plume used to evaluate e M during the well
network design process. One or more realizations can then be used to evaluate the
design.

The Monte Carlo approach was used in this work because results were readily
Ž .available from the previous work of Hassan et al. 1997, 1998 and because, in addition

to ensemble-averaged plumes used for design, they provide individual realizations with
which to test the network design approach. Ensemble-averaged plumes generated by
efficient and accurate perturbation approaches can be used in routine design application
of the proposed methodology. An advantage of the Monte Carlo approach, however, is
that it can easily incorporate macroscopic trends in the conductivity field induced, for
example, by buried rivers. This type of non-stationarity as well as reactive contaminants
are readily integrated in the proposed design methodology, but are not performed in this
study because of time and space constraints.

2.3. Extremization of the objectiÕe function

The extremization of the objective function in most network design problems is
Ž .difficult because of the large size of the search space potentially all space and time , the

Žexistence of multiple local minima and the integer nature of the problem Lee and Ellis,
.1996 . This type of problem can be approached with heuristic optimization algorithms or

Ž . Ž .partial directed enumeration techniques. Lee and Ellis 1996 compared several
heuristic techniques and suggested that they would be vastly more efficient than
complete enumeration in two-dimensional search spaces. A drawback of these tech-
niques, however, is that they do not take advantage of the physical nature of transport
processes. This is especially important in the present case in which time is considered
and the fact that contaminant plumes spread out with time due to dispersion can be used
advantageously during the design process. This type of physical consideration and other
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insights of the designer are, however, easily incorporated into partial enumeration
Ž .strategies Knopman and Voss, 1991 . The proposed extremization technique uses

partial enumeration directed by physical and geometric considerations relevant to
transport processes in porous media.

The success of enumeration strategies depends strongly on the size of the search
space. Since the plumes used in this work are generated based on Finite Difference
simulations of transport, the ‘‘expected’’ values of contaminant concentration are known
only on a grid G with nodes coincident with the centroids of blocks used to discretize
the flow domain and with the discrete time values corresponding to time steps of the

Ž .simulations. The search space is consequently reduced from V continuous space–time
Ž .to G discrete space–time . Secondly, the ensemble-averaged plume delimits a space–

time envelope outside of which the expected contamination is null and therefore does
Ž .not contribute to characterization James and Gorelick, 1994 . The search space can

therefore be reduced to the set of grid nodes S contained within this envelope without
loss of information. We have: M;S;G;V, and for each time step: M k ;Sk ;Gk in
which the superscript k is used to indicate the subset of M, S and G defined at the k th
time step. For example, M k represents the set of active wells at the k th time step and Sk

are grid nodes within the plume at that time.
Despite the significant reduction of search space from V to S, the optimization

problem is still extremely large and not amenable to full enumeration. For example,
selecting six active wells for each of the 10 time steps when Sk consists of a modest 100
nodes would require the generation and testing of 12 billion networks. To curb this
combinatorial explosion, the present study combines a partial enumeration aimed at
further reducing the search space with a full enumeration over an information-maximiz-
ing subset of the resulting reduced, search space. The method is only approximate, but
yields excellent results as discussed in the next section. The approach consists of two
steps:

< <1 Minimize: M , M ;SŽ . 1 1

Subject to: e M FeŽ .1 1

2 Minimize: e M , M ;MŽ . Ž .2 2 1

k< < w xSubject to: M FN , ;kg 0, K2 aw

The error level e plays a critical role in this procedure. It is selected to ensure1
< < < <M fN and gives an iterative nature to step 1: if M 4N then e must be1 max 1 max 1

Žincreased i.e., the error criterion should be relaxed by increasing the allowable level 1
.error and step 1 is repeated, otherwise, step 2 will be extremely time consuming and

< < < <may not fulfil the constraint M FN ; if M <N then e must be decreased and2 max 1 max 1

step 1 is repeated, otherwise, step 2 will not produce a near-optimal network. The
procedure can be viewed as the generation of a preliminary network, M , that is1

Ž . < <super-optimal with respect to e M , but fulfils the constraint on M only approxi-
mately, followed by a coarsening of this network resulting in M which displays2

< k <near-optimal characterization error and respects the constraint on M and expectedly
< < < <on M as well. The reason for generating M based on a minimization of M rather1 1
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Ž .than e M is that the former can be performed much more efficiently than the latter as1

discussed below. Steps 1 and 2 are described in Sections 2.3.1 and 2.3.2.

2.3.1. Determination of M1

The preliminary network, M , is determined by identifying and later merging1
Ž .sub-networks with minimal density and associated geometry required to maintain

plume characterization error below e from an initial time t sk t to the end of the1 i i
Ž .transport simulation K . Advective–dispersive transport of contaminants leads to

gradual spreading of solute plumes, which suggests that well density can be decreased
away from the source of contamination without severe loss in characterization accuracy
Ž .Grabow et al., 1993 . For a given plume area, a less dense network contains fewer wells
and is therefore less costly to install, maintain and sample, which makes it highly
desirable.

To determine M , networks with 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.0011

and 0.0005 wellsrm2 are generated and ranked by geometry based on the maximum
error that they produce from k to K. For each density, a series of periodic unit-cell-basedi

Ž .geometries are evaluated Fig. 1 . Unit cells are characterized by their widths in the x
and y directions, the number of wells that they contain and the pattern of well positions

Ž .within them w , w , nc and p, respectively . The density d of these cells defines that ofx y

Ž .Fig. 1. Examples of well network patterns, geometries and densities: a w s10 m, w s2.5 m, ncs5,x y
Ž . 2 Ž . Ž . 2ps 2, 5, 3, 1, 4 , ds0.2 wellrm ; b w s10 m, w s2.5 m, ncs5, ps 5, 2, 4, 1, 3 , ds0.2 wellrm ;x y

Ž . Ž . 2 Ž .c w s20 m, w s5 m, ncs5, ps 1, 3, 5,2, 4 , ds0.05 wellrm ; d w s8 m, w s10 m, ncs4,x y x y
Ž . 2ps 4, 1, 3, 2 , ds0.05 wellrm .



( )H.J. Montas et al.rJournal of Contaminant Hydrology 43 2000 271–301 283

the network: D Msdsncrw w . Cell widths of 0.5–50 m are used with ncs1 to 5x y

wells per cell. In each case, nc! geometric patterns are generated to locate wells within
Ž .the cells based on the permutations of the vector ps f , . . . , f in which 1F f Fnc,1 nc i

f / f if i/ j, and the position of the ith well in the cell is described by the x and yi j

offsets from the lower left corner: x s iw rnc and y s f w rnc.off x off i y

For each density d and at each time step k, the geometry p providing the smallest
maximum characterization error e from k to K is selected to form the preliminaryt,T

network, M k , K. This means that if M k , K is implemented, then the expected characteriza-d, p d, p
Ž k , K .tion error will never exceed e M from time t to T after the release of at,T d, p

contaminant. A plot of e vs. t for all d can then be used to identify density-errort,T

tradeoffs and determine feasible network density transitions with time that respect the
constraint e on maximum error. The result of this step is the set of potential sampling1

k1, K k 2 , K Ž k1, K .wells M sM jM j . . . with e M Fe ; i and k )k , d -d ,0 d , p d , p t ,T d , p 1 iq1 i iq1 i1 1 2 2 i 1 1

Ž .and, therefore, e M Fe . The indexed time steps identified by k in this formulationt 0 1 i

are those at which the density and geometry of the network can be changed from the
Ž . Ž .pair d ,k to d ,k without increasing characterization error above e , asiy1 iy1 i i 1

determined from the density-error tradeoff analysis. Next, for each density d , the seti

M k i , K is reduced to M k i ,k iq 1 sM k i , K lSk i ,k iq 1 where Sk i ,k iq 1 is the ensemble-averagedd , p d , p d , pi i i i i i

plume envelope between time steps k and k . This step does not modify e sincei iq1 t
k i , K Žwells in each M are sampled only between k and k after which wells ind , p i iq1i i

k iq 1, K . k i ,k iq 1M are sampled and so on . Finally, M is formed by merging the M :d , p 1 d , piq 1 iq1 i i
k1,k 2 k 2 ,k 3 Ž .M sM jM j . . . , which ensures that e M Fe for all time steps.1 d , p d , p 1 11 1 2 2

A well-sampling schedule can be determined for M based on an arbitrary sampling1
Ž .frequency f e.g., 1 set of samplesrweek . The sampling frequency is arbitrary becauses

the construction ensures that e is never exceeded irrespective of the specific time at1

which samples are taken. If sampling is performed at a time t corresponding to times

step k with k -k -k then the wells to be sampled are determined by M k s ss i s iq1 1

M k i ,k iq 1 lSk s where Sk s is the envelope of the ensemble-averaged plume at that timed , pi i
ts < k s < < k i ,k iq 1 < < <step. The number of active wells at that time is N s M - M < M andaw Ž1. 1 d , p 1i i

t s < k s <will generally depend on sampling time t . In addition, N F M lS and, hence,s aw Ž1. 1

not all wells within the plume envelope need to be sampled to meet the characterization
accuracy determined by e . The well-sampling schedule is then defined as the set of1

Ž k si.times and corresponding active wells t , M where the sampling times t aresi 1 si

determined from an arbitrarily selected sampling frequency.
ŽThe construction process guarantees that N is minimum at any time i.e.,awŽ1.

. k i ,k iq 1irrespective of sampling frequency , because the sub-networks, M , all have thed , pi i

smallest density necessary to maintain e . The construction also guarantees that the1

preliminary well network, M , will have a small cardinality since it is the union of1
< <minimum density sub-networks. The number of wells M will be a true minimum if1

sampling times are selected in such a way that whenever successive sampling times
correspond to sub-networks of differing density, there is no overlap between the
ensemble-averaged plume envelopes at these times. In other cases, there will be overlap

< <between the lowest density sub-networks merged to form M and this will cause M to1 1

be only a near minimum. Such near minima are accepted in this work because the
sampling frequency required to obtain a true minimum is expected to be too low to
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Ž .properly characterize plume dynamics within a relatively short time e.g., 1 month and
Ž .before it has traveled over a significant distance from its source e.g., 50 m . Further-

< <more, the reason for minimizing M is to permit a nearly full enumeration to be1
< <performed in the second part of the design process and a near-minimal M is sufficient1

for this process.

2.3.2. Determination of M2

The final monitoring well network, M , is determined by selecting wells from M in2 1
Ž .such a way that e M is minimized and the constraint on the number of active wells2

Ž < k < .M FN is respected. This is achieved through enumeration of combinations of N2 aw aw
< <wells from M , which is feasible since M is relatively small. For each time step k, the1 1

N -combination from M k sM lSk producing the smallest characterization error isaw 1 1
k < <selected to form M . During this process, M is minimized by maximizing well reuse.2 2

For this purpose, the set M is formed in order of increasing k and all wells of M k,2 1

which are in the envelope of plumes for time steps 1 to ky1, but not in the current
M sM k1 jM k 2 j . . . jM ky1 are deleted from M j based on position for all times2 2 2 2 1

jGk. Hence, the search space for each M k consists of the current M and the portion of2 2

M k that lies within the k th plume envelope, but not in that of previous plumes. This1

portion of M k is that which adds the most information on the k th plume relative to that1

which can already be derived from M . The use of this heuristic thus decreases2
< <computational time, keeps M small and is not expected to significantly degrade the2

plume characterization accuracy of the resulting network, especially when a small time
step is used in the design process as is the case in this study. Since M is sampled from2

Ž .M , which provides very high characterization accuracy e and has a small cardinality,1 1
< <M , and since M has a smaller cardinality and has the maximum accuracy for a given1 2

number of active wells N -N , it is expected that M is at least near optimal foraw awŽ1. 2

plume characterization.
This construction process minimizes the plume characterization error for a given

number of active wells through full enumeration over the reduced search space defined
Ž .by the well reuse heuristic reduced from M . The use of full enumeration guarantees1

that global rather than local minima are identified over this search space and, hence,
avoids problems related to the non-convexity of the problem. This is an advantage over
gradient-based optimization strategies and search algorithms such as Branch and Bound
Ž .B&B , which may get trapped in local minima. The process further ensures that the
constraint on the number of active wells is satisfied at all times. The sampling schedule
for the resulting monitoring well network consists of an arbitrary set of sampling times
Ž .possibly based on a constant frequency and the corresponding active well subsets
defined by M k.2

If the well reuse heuristic is not used then the search space over which M is2

developed is richer than each individual M k i ,k iq 1 used to form M . At any time step k, itd , p 1i i

contains portions of sub-networks with densities varying from more than that required to
meet e to less than that minimal density. Thus, as N ™N , it is guaranteed that1 aw awŽ1.
Ž . Ž .e M Fe M where equality corresponds to the worst-case situation: M sM .2 1 2 1

Similarly, because of the potential for well reuse across sub-networks, it is guaranteed
< < < <that M F M . Thus, overall, M is guaranteed to be at least as accurate as M and2 1 2 1
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have at most the same number of wells as M for the same number of active wells. The1

well reuse heuristic is not expected to significantly reduce characterization accuracy as
< <discussed above but should significantly decrease M . Thus, it is expected that when2

the heuristic is used, the maximum error made when sampling M will tend to a value2
< < < <of the order of e as N ™N but with M < M . In other words, the final1 aw awŽ1. 2 1

networks, M , will have accuracies comparable to those of M , for the same number of2 1

active wells, but will be significantly less costly to build because they contain a smaller
total number of wells.

Ž .The main reason for forming M is to reduce N i.e., to choose N <N , and2 aw aw awŽ1.
in so doing, one necessarily has to accept maximum characterization errors larger than
e . The maximum error is, however, arguably less important to network design than its1

expected value and standard deviation taken over all potential sampling times. These
statistics indicate the expected performance of a well network independently of sampling
frequency, whereas, the maximum error may occur only once or twice over all potential
sampling times. The standard deviation further provides an estimate of the confidence
that the designer can attach to plume characteristics obtained from a single set of
samples. Similar to the maximum error, the expected characterization error of M is2

expected to tend to that of M as N ™N and to be greater than that of M when1 aw awŽ1. 1

N <N . These performance statistics are used in this work to evaluate the effect ofaw awŽ1.
N on the characterization accuracy of the final designs determined by M .aw 2

Ž .Whereas, the expected characterization error a combined error measure provides the
overall picture of network performance that is important for design purposes, it does not
depict the accuracy with which individual plume characteristics are estimated by
sampling the network. This is because e is a combination of errors on several plumet

moments and that they are combined using absolute values. Thus, the error cancellations
that occur during successive over- and under-evaluations of individual moments are not
incorporated in the expected value of e . These are important, however, in a real worldt

situation where the dynamics of a plume are evaluated from multiple samples taken at
Žsuccessive times. The mean and standard deviation of errors on individual moments e0

.to e are therefore used in this work to evaluate the ability of the final design2 y

networks, M , to characterize the mass, position and extent of a single realization of a2

contaminant plume.
Finally, we note that the order in which the active sub-networks, M k, are formed may2

be varied if a pre-specified set of sampling times is provided, but this possibility is not
k Žused in the present study. Also, in estimating plume moments from M to determine2

Ž k . k ke M , network density is assumed to be given by: D M snrA in which the sampledt 2 2
k w Ž < k k <. Ž < k k <.xw Ž < k k <.area is approximated by: A s max x yx qmin x yx max y yy qi j i j i j

Ž < k k <.x Ž . Ž . kmin y yy where x , y and x , y are the spatial coordinates of two wells in Mi j i i j j 2

and i/ j.

3. Results and discussion

The proposed monitoring well network design methodology was applied to two
hypothetical situations in which a 6=2 m slug of contaminant had been released in an
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Ž .aquifer resulting in a uniform concentration of 0.4 units Fig. 2 . The two scenarios
correspond to different degrees of heterogeneity of hydraulic conductivity: s 2 s0.15f

and s 2 s0.40, and in both cases, K s2.72 mrday, ls1 m. The average transportf G
Ž .velocity in the x direction was 0.48 mrday 0 in the y direction and the flow and

transport equations were solved on a 0.5=0.5m grid with a time step of 0.5 days. Fig.
Ž . Ž . 22 b and c presents the ensemble-averaged plume for s s0.40 at 25 and 50 days,f

2 Ž . Ž .respectively, while results for s s0.15 are presented in Fig. 2 d and e . An examplef

realization of the hydraulic conductivity field with corresponding transport results are
Ž . Ž . Ž .presented in Fig. 2 f , g and h . In all cases, the plume boundary was cut off at a

concentration of 0.001 units, which corresponds to 0.25% of the source concentration.

Ž .Fig. 2. Plumes used for monitoring network design and testing. a Initial condition for transport simulations
Ž . Ž . 2 Žslug of contaminant . b and c Ensemble-averaged contaminant plume after 25 and 50 days for s s0.40. df

. 2 Ž .and e Ensemble-averaged contaminant plume after 25 and 50 days for s s0.15. f Example randomf
2 Ž . Ž .conductivity field generated with s s0.15. g and h Contaminant plume in random field f after 25 and 50f

days.



( )H.J. Montas et al.rJournal of Contaminant Hydrology 43 2000 271–301 287

Considering a 1 mgrl source of trichloroethylene, for example, the cutoff corresponds to
2.5 mgrl, which is slightly below the EPA human health 10y6 risk threshold of 2.7

Ž .mgrl Novotny and Olem, 1994 . Higher source concentrations can be adopted without
invalidating the design methodology by simply lowering the plume cutoff. This,
however, increases the computational time necessary for network design because the
plume envelope becomes larger.

Results demonstrate that dispersion leads to increases in plume area with time and
Ž 2 .that a higher variance of the conductivity field i.e., a larger value of s leads to moref

dispersion of the contaminant and, hence, spatially larger plumes at any given time. One
also notes that the single realization of transport is significantly more irregular than the
ensemble average and, hence, should be more difficult to characterize. However, neither
the ensemble-averaged plume nor the single realization appear strongly asymmetric on
the whole or significantly peaked, which suggests that characterization up to the second
moment is adequate.

The constraint on maximum total number of wells is selected as N s50 for thismax

example, and the maximum number of active wells N is given values of 3–11. Hence,aw

a preliminary network, M , with approximately 50 wells and a preliminary sampling1

schedule are generated for each of the two heterogeneity scenarios. Then, nine final
networks, M , each with its own constant number of active wells and sampling schedule2

are designed from each of the two M . The preliminary error level e is set tentatively1 1
< <to 5% and may be revised if M is significantly different from 50. The results of the1

Žsystematic investigation of network density and geometry on characterization error first
.step in determining M are presented in Fig. 3. A total of 7503 geometries were1

evaluated for both plumes. In each case, the time step used to evaluate plume
characterization errors was 0.5 day, which is the same as that used in the flow and
transport simulations. Results indicate that network densities larger than 0.5 wellrm2

Ž .yield essentially no error for both plumes not shown , while densities smaller than
0.005 wellrm2 produce errors greater than 50% for the first 50 days of transport. For a
fixed network density, the error is observed to decrease as time increases reflecting the
increase in plume dimension. This result is in agreement with those of Grabow et al.
Ž .1993 . Similarly, at a given time and for a given error level the more dispersed
s 2 s0.40 plume requires a less dense network than the less dispersed plume. Thisf

result appears counter-intuitive at first, but is exactly as expected. Indeed, a more
heterogeneous conductivity field causes the plume to be more spread, spatially, at any
given time than it is in a less heterogeneous field. Thus, if the plume was to be
characterized with equal accuracy by sampling only two wells, for example, then these
wells would have to be placed farther apart in the highly heterogeneous field than in the
less heterogeneous field. Wells placed farther apart correspond to a lower spatial density
of the monitoring network, which is the result obtained herein. Network density would
probably have to be increased with conductivity heterogeneity if the objective was to
characterize within-plume concentration heterogeneity, but this is not the goal of the
present study, which is focused on overall plume characteristics: mass, position, extent
and their dynamics.

Fig. 3 is used to determine the sub-network densities and geometries that produce
characterization errors below e s5%. Five breakpoints are identified for both plumes1



( )H.J. Montas et al.rJournal of Contaminant Hydrology 43 2000 271–301288

Ž .Fig. 3. Evolution of contaminant plume characterization error with time for several network densities a
2 Ž . 2s s0.15; b s s0.40.f f

corresponding to densities of 0.5, 0.2, 0.1, 0.05, and 0.02 wellrm2. The associated
sub-network geometries, transition times and contamination envelopes are shown in

Ž . Ž .Figs. 4 and 5 a – e . Results clearly illustrate how network density can be decreased
away from the source of contamination without loss in characterization accuracy.
Density transitions occur earlier for the larger variance plume owing to its faster spread.
It is interesting to note that despite the relative symmetry of the contaminant plume with

Žrespect to ys0, none of the selected sub-network is symmetrical although all are
.regular due to the generation process . This suggests that the enumeration strategy

successfully eliminates duplicate information. Indeed, if the concentration is the same at
Ž . Ž . Žpoints 20,y3 and 20,3 there is no need to sample both locations no information is

.gained by sampling the second point . This result is not necessarily true for a single
Ž .realization much more irregular , but in as much as one cannot determine a priori which
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2 Ž .Fig. 4. Selected network densities and geometries for a target error level of 5% when s s0.15. a Day 0 tof
2 Ž . 2 Ž . 2 Ž .1, ds0.5 wellrm ; b day 1.5 to 5, ds0.2 wellrm ; c day 5.5 to 18.5, ds0.1 wellrm ; d day 19 to

2 Ž . 2 Ž .46, ds0.05 wellrm ; e day 46.5 to 50, ds0.02 wellrm ; f day 0 to 50, merged networks and
contamination envelope.

of many equally likely realizations a given field situation corresponds to, the unique well
Ž Ž ..located at say 20,y3 is equally likely to over-sample as it is to under-sample the
plume, leading to a small expected value of the error. This type of error cancellation is
reflected in the value of e calculated based on the ensemble-averaged plume, but wouldt

not be apparent if e was calculated for each individual realization and then averagedt
Ž .over their ensemble or over time because of the use of absolute values in e . Thus,t

Ž .both e and error statistics for individual moments with their signs are used later tot

evaluate the performance of the designed networks for a single realization. Asymmetric
Ž . Ž .networks were also obtained by Meyer and Brill 1988 and Meyer et al. 1994 using a
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2 Ž .Fig. 5. Selected network densities and geometries for a target error level of 5% when s s0.40. a Day 0 tof
2 Ž . 2 Ž . 2 Ž .0.5, ds0.5 wellrm ; b day 1 to 3, ds0.2 wellrm ; c day 3.5 to 13.5, ds0.1 wellrm ; d day 14 to

2 Ž . 2 Ž .34, ds0.05 wellrm ; e day 34.5 to 50, ds0.02 wellrm ; f day 0 to 50, merged networks and
contamination envelope.

simulated annealing optimization process and Monte Carlo simulations based on the
advection–dispersion equation, which suggests that asymmetry is neither an artifact of
the optimization method nor of the numerical solution technique used in this study, but a
genuine characteristic of the optimal solution to the monitoring well design problem.

Ž . Ž .The sub-networks presented in Figs. 4 and 5 a – e each contain the minimum
number of wells necessary to characterize the plumes with a maximum error of 5%. This

Ž .number reaches a maximum of 17 for sub-network d , which also spans the longest
Ž .range of potential sampling times approximately 3 weeks . There is a significant degree

of overlap between successive sub-networks and, therefore, the preliminary network,
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< <M , formed by merging them will display only near minimality of M . True minima1 1

can, however, be obtained if the sampling frequency is low as discussed previously. For
s 2 s0.15, a true minimum is obtained by sampling once every 3 weeks for a total of 6f

Ž . Ž . Ž .weeks three samplings with M formed by merging sub-networks a and d only, for1
Ž Ž . Ž . Ž . Ž .a total of 31 wells the nearly overlapping wells at 16,0 of a and 15,0 of d are

Ž . Ž .. Ž . Ž .replaced by a single well at either 15.5,0 or 15,0 . Similarly, merging a and d and
< <sampling every 2 weeks for 4 weeks provides a true minimum of M s30 for1

2 Ž Ž . Ž . .s s0.40 after replacing wells at 12,0 and 13,0 with a single well . These truef

minima are not used further in this work because they require a specific sampling
Ž .frequency and contain too many active wells 15–17 .

Ž . Ž .Figs. 4 f and 5 f present the preliminary sampling networks, M , obtained by1

super-imposing the sub-networks described above. These networks contain 70 and 64

Fig. 6. Plume characterization error and number of wells as a function of time when sampling the merged well
Ž . Ž .networks of Figs. 4 and 5. a Maximum contaminant plume characterization error; b Number of wells

sampled and total number of wells within the contamination envelope.
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wells, which is judged to be close enough to N s50 that e s5% need not bemax 1

modified. Some of the wells are very close to one another suggesting that they can be
< <replaced by a single well to reduce M . This would, however, reduce the richness of1

Ž .the search space used to develop M and, hence, is not performed here. Fig. 6 a shows2

the actual characterization error occurring when wells are sampled according to M and1

demonstrates that this error is always less than e s5%. The expected characterization1

error over all time steps and its standard deviation are 2.10% and 0.95%, respectively,
for s 2 s0.15 and 2.68% and 1.19%, respectively, for s 2 s0.40.f f

Ž . Ž .Fig. 6 b shows the number of wells actually sampled active and total number of
wells within the ensemble average plume envelope as a function of time. The schedule
of M requires that 16–17 wells be sampled most of the time, which corresponds to1

Ž .sub-networks d of Figs. 4 and 5, and is judged to be excessive. The figure indicates
that up to 50 wells are included within the plume envelope during the monitoring
process and, therefore, it is quite possible that sampling M with a different schedule1

and smaller number of active wells will lead to similar characterization at significantly
less cost. This is the purpose of the second step of the design process, which leads to the
final monitoring networks, M .2

Final monitoring networks, M , generated by resampling M with 3, 6, 9 and 112 1

active wells are presented in Figs. 7 and 8 for the two ensemble-averaged plumes. The
number of active wells is constant in each one of these networks developed using the

2 Ž .Fig. 7. Final groundwater monitoring well networks, M , designed for s s0.15 with a three active wells2 f
Ž . Ž . Ž . Ž . Ž . Ž .total of 12 wells ; b six active wells total of 25 wells ; c nine active wells total of 35 wells ; d 11 active

Ž .wells total of 36 wells .
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2 Ž .Fig. 8. Final groundwater monitoring well networks, M , designed for s s0.40 with a three active wells2 f
Ž . Ž . Ž . Ž . Ž . Ž .total of 11 wells ; b six active wells total of 22 wells ; c nine active wells total of 30 wells ; d 11 active

Ž .wells total of 31 wells .

full enumeration strategy with well reuse as described previously, with a time step of 0.5
day. They therefore support a maximum sampling frequency of twice per day. The
networks are once again non-symmetric and well density decreases away from the
contaminant discharge point. The total number of wells increases from approximately 10
with three active wells to three times that value with 11 active wells and meets the
allowable maximum of 50.

Error statistics from sampling the final networks developed with 3–11 wells are
Žpresented and compared to those of M in Fig. 9. The mean characterization error over1

.half-day time steps and its variance generally decrease as the number of active wells is
increased from 3 to 11 indicating progressively better characterization. These trends are
modeled using exponentials of the form a e b Naw with least square parameters given in
Fig. 9. Fluctuations of the expected errors around the exponentials are attributed to the
limits imposed on the search spaces used to form M and M . These limits include the1 2

Ž .use of periodic unit cells, discrete rather than continuous network densities and the
well reuse heuristic. It is expected that increasing the number of densities used to form
M , using aperiodic unit cells or forming M from all wells within the plume envelope1 2

would reduce these fluctuations. These alternatives would, however, significantly in-
crease computational time or lead to final networks with a larger total number of wells.
The magnitude of fluctuations gives an indication of the distance between the designed
networks and optimal networks. The error for optimal networks is expected to have the
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Ž .Fig. 9. Error statistics of final monitoring well networks, M as a function of the number of active wells. a2
2 Ž . 2s s0.15; b s s0.40. Error bars represent one standard deviation.f f

same trend seen in Fig. 9, but the corresponding error decay curve would pass through
the minima of the data values shown in the figure. The fact that fluctuations about the

Ž .exponentials are generally small less than 5% therefore suggests that the designed
networks are close to optimal. The nearness to optimality is seen to depend on N andaw

s 2. The deviation is often larger in the more heterogeneous conductivity field and, inf

this case, networks designed with three, six and nine active wells provide the best
Žexpected plume characterization performance expected errors of 27%, 14% and 8%,

.respectively . Network designed with seven and nine active wells provide the best
Žexpected performance for the less heterogeneous plume expected errors of 8% and 5%,

.respectively . A sampling schedule for the network with nine active wells, which
performed very well for both plumes, is developed later in this paper.

The error decay exponentials in Fig. 9 were obtained by fitting data values obtained
with 3–11 active wells. These curves extrapolate almost exactly to the characterization
error provided by the preliminary networks, M . This result demonstrates the asymptotic1

nature of the process used to develop M , even when the well reuse heuristic is applied,2
Ž . Ž .as discussed earlier: e M ™fe M as N ™N . In other words, the well reuse2 1 aw awŽ1.

heuristic does not significantly degrade plume characterization accuracy.
A relatively simple tradeoff analysis can be used to demonstrate the dependence of

network installation and sampling costs on the desired plume characterization accuracy
and to evaluate the cost of the final network in relation to that of the preliminary
networks. The cost of installation of a single well is assumed to be US$400 and that of
sampling and analysis is assumed to be US$300 per well-sample. These values were

Ž .obtained from Massmann and Freeze 1987 and cross-checked with a private consultant
in northern Indiana. Fig. 10 shows the cost–accuracy tradeoff curves of the design
networks for the two heterogeneity scenarios assuming a sampling frequency of once per

Ž .week eight sets of samples for a monitoring period of 50 days . The monitoring cost
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Fig. 10. Cost–accuracy tradeoff curve for the final networks, M , compared to the preliminary networks, M .2 1

decreases as the allowable error increases, as expected, but does not appear to be
significantly affected by the degree of heterogeneity of the subsurface medium. The

Ž .expected increase in cost or decrease in economy with an increase in network accuracy
Ž .was also reported by Morisawa and Inoue 1991 . The lack of effect of heterogeneity is

due in part to the fact that, whereas, the lower heterogeneity plume requires a smaller
Ž Ž .number of active wells to achieve a given characterization accuracy compare Fig. 9 a

Ž .. Ž .and b , it generally requires a larger total number of wells compare Figs. 7 and 8 . In
the case of nine active wells, for example, the characterization errors are 5% and 8% for
s 2 s0.15 and 0.40, respectively, but the corresponding total number of wells are 35f

Ž Ž .and 30, respectively Ben-Jamaa et al. 1995 also found an increase in characterization
.error with media heterogeneity for a constant number of sampling sites . Hence, due to

the larger total number of wells, the total cost is larger for the network with greater
accuracy. A difference will emerge when monitoring duration is large enough that
sampling costs significantly exceed building costs and in this case networks for the
lower heterogeneity environment will turn out to be less expensive for a given error
level, as one would intuitively expect.

Monitoring M using its design schedule of well activity is obviously less expensive2

than sampling all wells in the network. For the network with nine active wells
Ž 2 .s s0.15, expected errors5% , for example, the total number of wells is 35 andf

monitoring once a week over all of these wells yields a cost of US$98,000, which is
more than two and a half times the US$35,600 cost of monitoring only the nine active
wells.

The cost–accuracy tradeoff curve obtained by combining results for both degrees of
Ž . Ž 2 .heterogeneity Fig. 10 is relatively well approximated by an exponential R s0.88 .

Extrapolating this curve to the error level provided by M shows that M is expected to1 2

provide equal characterization accuracy for approximately US$23,000 less than M .1
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Table 1
Sampling schedule of final network, M with nine active wells when s 2 s0.152 f

Ž . Ž .Sampling date day Error % Wells sampled

1 4.5 3, 5, 6, 7, 9, 12, 17, 25, 37
8 6.9 5, 12, 17, 22, 23, 25, 38, 41, 46

15 7.3 5, 12, 22, 23, 35, 38, 41, 46, 52
22 3.0 6, 25, 39, 40, 43, 46, 51, 62, 65
29 5.6 7, 23, 43, 44, 46, 47, 52, 62, 65
36 7.0 22, 35, 39, 47, 51, 56, 58, 63, 65
43 2.6 25, 35, 47, 54, 56, 58, 61, 63, 65
50 6.0 38, 47, 54, 56, 58, 60, 63, 65, 66

This cost reduction is due to the fact that M is expected to have a smaller total number2
Žof wells than M when they both have the same accuracy and also the same number of1

.active wells as discussed in relation to Fig. 9 . This result supports the hypothesis that
the two-step extremization approach used in this study successfully produces final
networks, which have both the smallest number of active wells and the smallest total

Ž .number of wells and, hence, the lowest cost necessary to produce a given plume
characterization accuracy, or at least, networks which are quite close to these minima.

Results in Figs. 7–9 also indicate that provided one is willing to accept error levels of
30%, then as little as 12 wells can be used with three active wells at any time. This may
be quite acceptable if one remembers that the expected error is based on the maximum
of absolute values of individual moment errors and, as such, does not reflect error
cancellations from successive over- and under-estimation of these moments. The sub-

Žstantial cost savings the cost is approximately US$13,500 or US$23,000 less than a
.network producing 5% error accruing from the installation maintenance and, hence,

sampling of this ‘‘smaller’’ well field may justify the adoption of the coarser design,
especially for low toxicity contaminants where the risk associated with a less accurate
characterization is low.

The designed networks include both well positions and a well-sampling schedule,
which depends on the set of selected sampling times. Sampling schedules for the
networks with nine active wells are presented in Tables 1 and 2 for a sampling

Table 2
Sampling schedule of final network, M with nine active wells when s 2 s0.42 f

Ž . Ž .Sampling date day Error % Wells sampled

1 8.8 5, 7, 11, 12, 15, 16, 28, 29, 42
8 8.5 7, 11, 12, 16, 23, 26, 31, 38, 46

15 6.1 16, 23, 25, 26, 30, 37, 42, 48, 51
22 11.2 23, 25, 28, 30, 31, 40, 46, 51, 53
29 4.9 7, 23, 31, 40, 47, 50, 51, 53, 54
36 6.6 12, 15, 23, 47, 50, 51, 53, 54, 56
43 3.9 25, 46, 50, 51, 53, 54, 56, 62, 64
50 18.8 26, 37, 46, 50, 53, 54, 55, 56, 64
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frequency of once per week. The numerical IDs of the wells to be sampled at each time
Ž . Ž .in those schedules correspond to values presented in Figs. 7 c and 8 c . The plume

characterization error corresponding to each sampling time fluctuates mildly about the
expected value. The mean error over these schedules are 5.4% and 8.6% for s 2 s0.15f

and s 2 s0.15, respectively, and are quite close to the expected values of 5% and 8%f

that would result from sampling twice a day, which is the maximum frequency
supported by the design process. Alternative schedules, possibly with unequal intervals
can also be derived easily from the design procedure.

The networks designed for the lower variance plume were also applied to the
Ž . Ž . Ž .characterization of the single realization shown in Fig. 2 g and h . Fig. 11 a presents

the statistics of the maximum moment error as a function of the number of active wells
for this case and suggests that the performance of the networks is lower for the single
realization than for the ensemble average plume. The mean error decreases as the

Fig. 11. Plume characterization error statistics for a single realization with s 2 s0.15 as a function of thef
Ž . Ž .number of active wells for the final monitoring networks. a Combined error on all moments, e ; b relativet

Ž . Ž .error on the plume mass, e ; c relative error on longitudinal and lateral centroidal position, e and e ; d0 1 x 1 y
Ž .Relative error on longitudinal and lateral plume extent, e and e . Error bars in a represent one standard2 x 2 y

deviation.
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number of active wells is increased but reaches a disappointing minimum of only about
20%. As discussed earlier, the relatively large minimum error in this case is due to the
irregularities of the plume and to the use of absolute values in e , which does nott

account for cancellation of over- and under-estimated plume moments when calculated
on a single realization. The mean errors for individual plume moments do, however,
incorporate such cancellations and provide a more detailed estimate of network perfor-

Ž Ž . Ž . Ž ..mance in a real-world monitoring situation Fig. 11 b , c , d . The expected errors on
individual moments decrease as the number of active wells is increased. Expected errors
on all but the second transverse moment have values below 6% whenever more than six
active wells are used. The error on the second transverse moment is less or equal to 13%
when more than seven active wells are used. It should be noted that although the mean
error on the latter moment is generally larger than that on other moments, it is not
always the largest at a given time. For example, in the case of nine active wells, the
largest error is that on the mass, longitudinal centroidal position, lateral centroidal
position, longitudinal extent and lateral extent 34%, 2%, 14%, 12% and 38% of the

Ž .time, respectively based on a time step of 0.5 days . It should also be noted that the
individual mean errors in Fig. 11 are estimated under the assumption of high-frequency
sampling and have relatively large standard deviations. Individual mean errors for lower
frequencies are therefore likely to be larger than those presented in the figure. For the
sampling schedule presented in Table 1, the mean errors on individual moments are, in
order, 4.2%, 2.3%, 2.5%, 6.5% and 10.5% for e to e . These results demonstrate the0 2 y

very good performance of the monitoring network with one set of samples taken weekly.

4. Summary and conclusions

A heuristic methodology for designing groundwater quality monitoring well networks
in space and time was presented and evaluated. The design objective was to minimize
contaminant plume characterization error while satisfying constraints on the maximum
number of wells and number of active wells. The objective function was defined in
terms of spatial moments of the contaminant plume. A Monte Carlo technique was used
to generate the truth plumes that were used to evaluate the objective function. The
objective function was extremized using a two-step process relying on a directed
enumeration strategy. The results of the design procedure were sets of sampling well
positions with associated sampling schedule.

Two ensemble-averaged test plumes and a single realization were used to demon-
strate and evaluate the methodology. The proposed design approach generated near-opti-
mal non-symmetric well networks in which sampling density decreased with distance
from the point of contaminant release. The mean characterization error decreased as the
number of active wells increased and reached a value of 5% to 9% depending on
hydraulic conductivity variance at nine active wells. It was suggested that networks with

Ž .as little as three active wells total of 12 wells can give adequate plume characterization
for low toxicity contaminants at small cost. Characterization errors for a single realiza-
tion were higher than those of the ensemble-averaged plume, but followed the same
trend with respect to the number of active wells. Expected errors calculated for
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individual moments, however, demonstrated the accuracy of the designs in this approxi-
mation of real-world conditions.

The proposed methodology is easily extended to non-stationary conductivity fields,
reactive contaminants, sampling schedules with unequal time intervals and characteriza-
tion of plume skewness and peakedness. Future work will focus on evaluating composite
objective functions, comparing present results with those of alternate optimization
strategies, validating the approach for reactive contaminants, evaluating results at larger
scales and testing the methodology on time-dependent flow fields and alternative
contaminant release modes. These goals of future work are particularly applicable to the
design of well networks used to monitor the progress of bioremediation activities. A
long-term goal of the project is to investigate the possible existence of a ‘‘universal’’
optimal network geometry and sampling schedule applicable to arbitrary degrees of
heterogeneity and contamination scenarios.
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